AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model
-
Published:2022-08-29
Issue:16
Volume:15
Page:6399-6427
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Streffing Jan, Sidorenko Dmitry, Semmler TidoORCID, Zampieri LorenzoORCID, Scholz PatrickORCID, Andrés-Martínez MiguelORCID, Koldunov NikolayORCID, Rackow ThomasORCID, Kjellsson JoakimORCID, Goessling HelgeORCID, Athanase MarylouORCID, Wang QiangORCID, Hegewald JanORCID, Sein Dmitry V.ORCID, Mu LongjiangORCID, Fladrich Uwe, Barbi DirkORCID, Gierz Paul, Danilov Sergey, Juricke StephanORCID, Lohmann GerritORCID, Jung ThomasORCID
Abstract
Abstract. We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 (Finite-volumE Sea ice–Ocean Model) has the multi-resolution functionality typical of unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of the latest developments in the numerical-weather-prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable-resolution (25–125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other ongoing research activities with AWI-CM3. This includes the exploration of high and variable resolution and the development of a full Earth system model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above-CMIP6-average skills (where CMIP6 denotes Coupled Model Intercomparison Project phase 6) in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Reference124 articles.
1. Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003,
2004. a 2. Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin,
D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R.,
and Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) Monthly
Analysis (New Version 2.3) and a Review of 2017 Global Precipitation,
Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018. a 3. Ali, A., Christensen, K. H., Øyvind Breivik, Malila, M., Raj, R. P., Bertino,
L., Chassignet, E. P., and Bakhoday-Paskyabi, M.: A comparison of Langmuir
turbulence parameterizations and key wave effects in a numerical model of the
North Atlantic and Arctic Oceans, Ocean Model., 137, 76–97,
https://doi.org/10.1016/j.ocemod.2019.02.005, 2019. a 4. Baker, A. J., Schiemann, R., Hodges, K. I., Demory, M.-E., Mizielinski, M. S.,
Roberts, M. J., Shaffrey, L. C., Strachan, J., and Vidale, P. L.: Enhanced
Climate Change Response of Wintertime North Atlantic Circulation, Cyclonic
Activity, and Precipitation in a 25-km-Resolution Global Atmospheric Model,
J. Climate, 32, 7763–7781, https://doi.org/10.1175/JCLI-D-19-0054.1, 2019. a 5. Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G., Benson, R., Caubel, A., Durachta, J., Foujols, M.-A., Lister, G., Mocavero, S., Underwood, S., and Wright, G.: CPMIP: measurements of real computational performance of Earth system models in CMIP6, Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, 2017. a
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|