East Asian summer precipitation in AWI‐CM3: Comparison with observations and CMIP6 models

Author:

Shi Jian12ORCID,Stepanek Christian1,Sein Dmitry1,Streffing Jan13,Lohmann Gerrit14

Affiliation:

1. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany

2. Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science and Technology Nanjing China

3. Jacobs University Bremen Bremen Germany

4. University of Bremen Bremen Germany

Abstract

AbstractOwing to the complicated spatial–temporal characteristics of East Asian precipitation (EAP), climate models have limited skills in simulating the modern Asian climate. This consequently leads to large uncertainties in simulations of the past EAP variation and future projections. Here, we explore the performance of the newly developed Alfred Wegener Institute Climate Model, version 3 (AWI‐CM3) in simulating the climatological summer EAP. To test whether the model's skill depends on its atmosphere resolution, we design two AWI‐CM3 simulations with different horizontal resolutions. The result shows that both simulations have acceptable performance in simulating the summer mean EAP, generally better than the majority of individual models participating in the Coupled Model Intercomparison Project (CMIP6). However, for the monthly EAP from June to August, AWI‐CM3 exhibits a decayed skill, which is due to the subseasonal movement of the western Pacific subtropical high bias. The higher‐resolution AWI‐CM3 simulation shows an overall improvement relative to the one performed at a relatively lower resolution in all aspects taken into account regarding the EAP. We conclude that AWI‐CM3 is a suitable tool for exploring the EAP for the observational period. Having verified the model's skill for modern climate, we suggest employing the AWI‐CM3, especially with high atmosphere resolution, both for applications in paleoclimate studies and future projections.

Funder

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

China Scholarship Council

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3