NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions
-
Published:2022-09-01
Issue:17
Volume:15
Page:6567-6579
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Marques Gustavo M.ORCID, Loose Nora, Yankovsky Elizabeth, Steinberg Jacob M.ORCID, Chang Chiung-Yin, Bhamidipati Neeraja, Adcroft Alistair, Fox-Kemper BaylorORCID, Griffies Stephen M.ORCID, Hallberg Robert W., Jansen Malte F., Khatri HemantORCID, Zanna Laure
Abstract
Abstract. We describe an idealized primitive-equation model for studying mesoscale turbulence and leverage a hierarchy of grid resolutions to make eddy-resolving calculations on the finest grids more affordable.
The model has intermediate complexity, incorporating basin-scale geometry with idealized Atlantic and Southern oceans and with non-uniform ocean depth to allow for mesoscale eddy interactions with topography.
The model is perfectly adiabatic and spans the Equator and thus fills a gap between quasi-geostrophic models, which cannot span two hemispheres, and idealized general circulation models, which generally include diabatic processes and buoyancy forcing.
We show that the model solution is approaching convergence in mean kinetic energy for the ocean mesoscale processes of interest and has a rich range of dynamics with circulation features that emerge only due to resolving mesoscale turbulence.
Funder
U.S. Department of Commerce Division of Ocean Sciences Division of Atmospheric and Geospace Sciences Climate Program Office
Publisher
Copernicus GmbH
Reference41 articles.
1. Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O.,
Dunne, J. P., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Held, I.,
Jansen, M. F., John, J., Krasting, J. P., Langenhorst, A., Legg, S., Liang,
Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels, B. L.,
Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B., Zadeh, N.,
and Zhang, R.: The GFDL Global Ocean and Sea Ice Model OM4.0:
Model Description and Simulation Features, J. Adv. Model. Earth Sy., 11, 3167–3211, https://doi.org/10.1029/2019MS001726, 2019. a, b, c, d 2. Anstey, J. A. and Zanna, L.: A deformation-based parametrization of ocean
mesoscale eddy reynolds stresses, Ocean Model., 112, 99–111,
https://doi.org/10.1016/j.ocemod.2017.02.004, 2017. a 3. Arakawa, A. and Hsu, Y.-J. G.: Energy Conserving and Potential-Enstrophy
Dissipating Schemes for the Shallow Water Equations, Mon.
Weather Rev., 118, 1960–1969,
https://doi.org/10.1175/1520-0493(1990)118<1960:ECAPED>2.0.CO;2, 1990. a 4. Arbic, B. K. and Flierl, G. R.: Baroclinically Unstable Geostrophic
Turbulence in the Limits of Strong and Weak Bottom Ekman
Friction: Application to Midocean Eddies, J. Phys.
Oceanogr., 34, 2257–2273,
https://doi.org/10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2, 2004. a, b 5. Arbic, B. K., Scott, R. B., Flierl, G. R., Morten, A. J., Richman, J. G., and
Shriver, J. F.: Nonlinear Cascades of Surface Oceanic Geostrophic
Kinetic Energy in the Frequency Domain, J. Phys.
Oceanogr., 42, 1577–1600, https://doi.org/10.1175/JPO-D-11-0151.1, 2012. a
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|