Matrix representation of lateral soil movements: scaling and calibrating CE-DYNAM (v2) at a continental level

Author:

Fendrich Arthur Nicolaus,Ciais PhilippeORCID,Lugato Emanuele,Carozzi MarcoORCID,Guenet BertrandORCID,Borrelli PasqualeORCID,Naipal VictoriaORCID,McGrath Matthew,Martin Philippe,Panagos PanosORCID

Abstract

Abstract. Promoting sustainable soil management is a possible option for achieving net-zero greenhouse gas emissions in the future. Several efforts in this area exist, and the application of spatially explicit models to anticipate the effect of possible actions on soils at a regional scale is widespread. Currently, models can simulate the impacts of changes on land cover, land management, and the climate on the soil carbon stocks. However, existing modeling tools do not incorporate the lateral transport and deposition of soil material, carbon, and nutrients caused by soil erosion. The absence of these fluxes may lead to an oversimplified representation of the processes, which hinders, for example, a further understanding of how erosion has been affecting the soil carbon pools and nutrients through time. The sediment transport during deposition and the sediment loss to rivers create dependence among the simulation units, forming a cumulative effect through the territory. If, on the one hand, such a characteristic implies that calculations must be made for large geographic areas corresponding to hydrological units, on the other hand, it also can make models computationally expensive, given that erosion and redeposition processes must be modeled at high resolution and over long timescales. In this sense, the present work has a three-fold objective. First, we provide the development details to represent in matrix form a spatially explicit process-based model coupling sediment, carbon, and erosion, transport, and deposition (ETD) processes of soil material in hillslopes and valley bottoms (i.e., the CE-DYNAM model). Second, we illustrate how the model can be calibrated and validated for Europe, where high-resolution datasets of the factors affecting erosion are available. Third, we presented the results for a depositional site, which is highly affected by incoming lateral fluxes from upstream lands. Our results showed that the benefits brought by the matrix approach to CE-DYNAM enabled the before-precluded possibility of applying it on a continental scale. The calibration and validation procedures indicated (i) a close match between the erosion rates calculated and previous works in the literature at local and national scales, (ii) the physical consistency of the parameters obtained from the data, and (iii) the capacity of the model in predicting sediment discharge to rivers in locations observed and unobserved during its calibration (model efficiency (ME) =0.603, R2=0.666; and ME =0.152, R2=0.438, respectively). The prediction of the carbon dynamics on a depositional site illustrated the model's ability to simulate the nonlinear impact of ETD fluxes on the carbon cycle. We expect that our work advances ETD models' description and facilitates their reproduction and incorporation in land surface models such as ORCHIDEE. We also hope that the patterns obtained in this work can guide future ETD models at a European scale.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference101 articles.

1. Bai, Z.: Templates for the solution of algebraic eigenvalue problems: a practical guide, Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104, Philadelphia, Pa, ISBN-13 978-0898714715, ISBN-10 0898714710 2000. a

2. Ballabio, C., Borrelli, P., Spinoni, J., Meusburger, K., Michaelides, S., Beguería, S., Klik, A., Petan, S., Janeček, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Tadić, M. P., Diodato, N., Kostalova, J., Rousseva, S., Banasik, K., Alewell, C., and Panagos, P.: Mapping monthly rainfall erosivity in Europe, Sci. Total Environ., 579, 1298–1315, https://doi.org/10.1016/j.scitotenv.2016.11.123, 2017. a, b

3. Bonan, G. B. and Doney, S. C.: Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models, Science, 359, eaam8328, https://doi.org/10.1126/science.aam8328, 2018. a

4. Bork, H.-R. and Lang, A.: Quantification of past soil erosion and land use/land cover changes in Germany, in: Long Term Hillslope and Fluvial System Modelling, 1st edn., edited by: Lang, A., Dikau, R., and Hennrich, K., Springer Berlin Heidelberg, 231–239, eBook ISBN: 978-3-540-36606-5, https://doi.org/10.1007/3-540-36606-7_12, 2003. a

5. Borrelli, P., van Oost, K., Meusburger, K., Alewell, C., Lugato, E., and Panagos, P.: A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes, Environ. Res., 161, 291–298, https://doi.org/10.1016/j.envres.2017.11.009, 2018. a, b, c

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3