Half of the soil erosion in the Alps during the Holocene is explained by transient erosion crises as a consequence of rapid human land clearing

Author:

Mazure Théo1ORCID,Saulnier Georges-Marie2,Giguet-Covex Charline2ORCID,Sabatier Pierre2,Bajard Manon3,Chanudet Vincent4,Arnaud Fabien2ORCID,Jenny Jean-Philippe1

Affiliation:

1. Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France

2. Université Savoie Mont-Blanc, CNRS, EDYTEM, Le Bourget-du-Lac, France

3. University of Oslo, Department of Geosciences and Centre for Biogeochemistry in the Anthropocene, Oslo, Norway

4. Électricité de France, Centre d’Ingénierie Hydraulique, Le Bourget-du-Lac, France

Abstract

Human land use changes have altered soil erosion for millennia with extensive consequences on terrestrial and aquatic ecosystems as well as on biogeochemical cycles along the land-ocean continuum. Despite their great importance, past erosion trends have high uncertainties limiting quantitative estimates of long-term erosion dynamics. Here, we applied a new approach combining well-dated paleo-records of soil erosion from lake sediments and a spatially distributed semi-empirical model to simulate annual soil erosion in six lake watershed systems in the Northwestern Alps during the Holocene. Progressive and abrupt changes in soil erosion are detected in the six watersheds. Progressive erosion explains most of the soil exports observed during the Early to Mid-Holocene period (from 11,700 to 3000 cal. yr. BP), while transient erosion crises (i.e., periods of abrupt increase in the erosion rates spanning approximately 1000 ± 500 years) led to massive soil losses during the Late-Holocene period (from 3000 to 1000 cal. yr. BP). Our coupled approach of proxy-model reconstruction shows that the transient erosion crises represent the half of the total soil erosion exports during the Holocene. These estimates defy current representations of large-scale soil erosion during the Holocene that do not consider transient erosion crises, hence potentially underestimating the anthropogenic perturbation of lateral fluxes and fate along the land-ocean continuum. Our results further suggest that erosion and/or land cover proxies need to be consistently integrated into model approaches when attempting to estimate past variations in mass exports from terrestrial to aquatic ecosystems over centennial to millennial timescales.

Funder

Agence Nationale de la Recherche

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3