Abstract
Abstract. The most accurate rainfall-runoff predictions are currently based on deep learning. There is a concern among hydrologists that data-driven models based on deep learning may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis using Long Short-Term Memory networks (LSTMs) and an LSTM variant that is architecturally constrained to conserve mass. The LSTM (and the mass-conserving LSTM variant) remained relatively accurate in predicting extreme (high return-period) events compared to both a conceptual model (the Sacramento Model) and a process-based model (US National Water Model), even when extreme events were not included in the training period. Adding mass balance constraints to the data-driven model (LSTM) reduced model skill during extreme events.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献