Description and evaluation of the JULES-ES set-up for ISIMIP2b
-
Published:2023-07-27
Issue:14
Volume:16
Page:4249-4264
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Mathison CamillaORCID, Burke EleanorORCID, Hartley Andrew J.ORCID, Kelley Douglas I.ORCID, Burton ChantelleORCID, Robertson Eddy, Gedney NicolaORCID, Williams KarinaORCID, Wiltshire Andy, Ellis Richard J., Sellar Alistair A.ORCID, Jones Chris D.ORCID
Abstract
Abstract. Global studies of climate change impacts that use future
climate model projections also require projections of land surface changes.
Simulated land surface performance in Earth system models is often affected
by the atmospheric models' climate biases, leading to errors in land surface projections. Here we run the Joint UK Land Environment Simulator Earth System configuration (JULES-ES) land surface model with the Inter-Sectoral Impact Model Intercomparison Project second-phase future projections (ISIMIP2b) bias-corrected climate model data from four global climate models (GCMs). The bias correction reduces the impact of the climate biases present in individual models. We evaluate the performance of JULES-ES against present-day observations to demonstrate its usefulness for providing required information for impacts such as fire and river flow. We include a standard JULES-ES configuration without fire as a contribution to ISIMIP2b and JULES-ES with fire as a potential future development. Simulations for gross primary productivity (GPP), evapotranspiration (ET) and albedo compare well against observations. Including fire improves the simulations, especially for ET and albedo and vegetation distribution, with some degradation in shrub cover and river flow. This configuration represents some of the most current Earth system science for land surface modelling. The suite associated with this configuration provides a basis for past and future phases of ISIMIP, providing a simulation set-up, postprocessing and initial evaluation, using the International Land Model Benchmarking (ILAMB) project. This suite ensures that it is as straightforward, reproducible and transparent as possible to follow the protocols and participate fully in ISIMIP using JULES.
Funder
Newton Fund Department for Business, Energy and Industrial Strategy, UK Government Natural Environment Research Council Horizon 2020
Publisher
Copernicus GmbH
Reference69 articles.
1. Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded
precipitation for systematic bias, J. Geophys. Res.-Atmos., 108, 4257, https://doi.org/10.1029/2002JD002499, 2003. 2. Adzhar, R., Kelley, D. I., Dong, N., George, C., Torello Raventos, M., Veenendaal, E., Feldpausch, T. R., Phillips, O. L., Lewis, S. L., Sonké, B., Taedoumg, H., Schwantes Marimon, B., Domingues, T., Arroyo, L., Djagbletey, G., Saiz, G., and Gerard, F.: MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas, Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, 2022. 3. Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster,
S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J.
R., Yue C., and Randerson, J. T.: A human-driven decline in global burned
area, Science, 356, 1356–1362, 2017. 4. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 5. Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships versus emergent patterns in the global controls of fire frequency, Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|