Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain

Author:

Buechel Marcus,Slater LouiseORCID,Dadson Simon

Abstract

Abstract. Widespread afforestation has been proposed internationally to reduce atmospheric carbon dioxide; however, the specific hydrological consequences and benefits of such large-scale afforestation (e.g. natural flood management) are poorly understood. We use a high-resolution land surface model, the Joint UK Land Environment Simulator (JULES), with realistic potential afforestation scenarios to quantify possible hydrological change across Great Britain in both present and projected climate. We assess whether proposed afforestation produces significantly different regional responses across regions; whether hydrological fluxes, stores and events are significantly altered by afforestation relative to climate; and how future hydrological processes may be altered up to 2050. Additionally, this enables determination of the relative sensitivity of land surface process representation in JULES compared to climate changes. For these three aims we run simulations using (i) past climate with proposed land cover changes and known floods and drought events; (ii) past climate with independent changes in precipitation, temperature, and CO2; and (iii) a potential future climate (2020–2050). We find the proposed scale of afforestation is unlikely to significantly alter regional hydrology; however, it can noticeably decrease low flows whilst not reducing high flows. The afforestation levels minimally impact hydrological processes compared to changes in precipitation, temperature, and CO2. Warming average temperatures (+3 °C) decreases streamflow, while rising precipitation (130 %) and CO2 (600 ppm) increase streamflow. Changes in high flow are generated because of evaporative parameterizations, whereas low flows are controlled by runoff model parameterizations. In this study, land surface parameters within a land surface model do not substantially alter hydrological processes when compared to climate.

Funder

UK Research and Innovation

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3