Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis

Author:

Baek Bok H.ORCID,Coats Carlie,Ma Siqi,Wang Chi-TsanORCID,Li YunyaoORCID,Xing Jia,Tong DanielORCID,Kim Soontae,Woo Jung-Hun

Abstract

Abstract. There have been consistent efforts to improve the spatiotemporal representations of biogenic/anthropogenic emission sources for photochemical transport modeling for better accuracy of local/regional air quality forecasts. While biogenic emissions, bi-directional NH3 from fertilizer applications, and point source plume rise are dynamically coupled in the Community Multiscale Air Quality (CMAQ) “inline”, there are still known meteorology-induced emissions sectors (e.g., on-road mobile sources, residential heating, and livestock waste), with little or no accounting for the meteorological impacts in the currently operational chemical and aerosol forecasts, but they are represented with static, not weather-aware annual or monthly county total emissions and standard monthly, weekly, or daily temporal allocation profiles to disaggregate them on finer timescales for the hourly air quality forecasts. It often results in poor forecasting performance due to the poor spatiotemporal representations of precursor pollutants during high ozone and PM2.5 episodes. The main focus of this study is to develop a dynamic inline coupler within the CMAQ system for the on-road mobile emission sector that requires significant computational resources in the current modeling application. To improve their accuracy and spatiotemporal representations, we developed the inline coupler module called CMAQ-MetEmis (for meteorology-induced emission sources within CMAQ version 5.3.2 modeling system). It can dynamically estimate meteorology-induced hourly gridded on-road mobile emissions within the CMAQ, using simulated meteorology without any computational burden to the CMAQ modeling system. To understand the impacts of meteorology-driven on-road mobile emissions on local air quality, the CMAQ is applied over the continental U.S. for 2 months (January and July 2019) for two emissions scenarios, namely (a) “static” on-road vehicle emissions based on static temporal profiles and (b) inline CMAQ-MetEmis on-road vehicle emissions. Overall, the CMAQ-MetEmis coupler allows us to dynamically simulate on-road vehicle emissions from the MOtor Vehicle Emission Simulator (MOVES) on-road emission model for CMAQ, with a better spatiotemporal representation based on the simulated meteorology inputs when compared to the static scenario. The domain total of daily volatile organic compound (VOC) emissions from the inline scenario shows that the largest impacts are from the local meteorology, which is approximately 10 % lower than the ones from the static scenario. In particular, the major difference in the VOC estimates was shown over the California region. These local meteorology impacts on the on-road vehicle emissions via CMAQ-MetEmis revealed an improvement in the hourly NO2, daily maximum ozone, and daily average PM2.5 patterns, with a higher agreement and correlation with daily ground observations.

Funder

National Oceanic and Atmospheric Administration

National Research Foundation of Korea

Korea Environmental Industry and Technology Institute

Publisher

Copernicus GmbH

Subject

General Medicine

Reference45 articles.

1. Andrade, M. d. F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J., Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M., Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives, Atmos. Environ., 159, 66–82, https://doi.org/10.1016/j.atmosenv.2017.03.051, 2017.

2. Baek, B. H.: The Integration approach of MOVES and SMOKE models, the 19th Emissions Inventory Conference, San Antonio, TX, https://gaftp.epa.gov/air/nei/ei_conference/EI20/session2/baek.pdf (last access: 28 July 2023), 2010.

3. Baek, B.: CMAQ-MetEmis: Development of Dynamic Meteorology-Induced Emissions Coupler (MetEmis) for Onroad Mobile Sources in the Community Multiscale Air Quality (CMAQ) (version 1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7150000, 2022.

4. Baek, B. H. and Seppanen, C.: CEMPD/SMOKE: SMOKE v4.8.1 Public Release (January 29, 2021), Zenodo [data set], https://doi.org/10.5281/zenodo.4480334, 2021.

5. Baek, B. H., Seppanen, C., Houyoux, M., Eyth, A., and Mason, R.: Installation Guide for the SMOKE-MOVES Integration Tool, https://www.cmascenter.org/smoke/documentation/0*moves_tool/SMOKE_MOVES_Tool_Installation_Guide.pdf (last access: 28 July 2023), 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3