Dynamic Meteorology-Induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis

Author:

Baek Bok H.ORCID,Coats Carlie,Ma Siqi,Wang Chi-TsanORCID,Xing Jia,Tong DanielORCID,Kim Soontae,Woo Jung-Hun

Abstract

Abstract. The main focus of this study is to develop a dynamic-coupling “inline” air quality modeling system for the meteorology-induced emissions with simulated meteorological data. To improve the spatiotemporal representations and accuracy of onroad vehicle emissions, which are largely senstivie to local meteorology, we developed the “inline” coupler module called “MetEmis” for Meteorology-Induced Emission sources within the Community Multiscale Air Quality (CMAQ) version 5.3.2 modeling system. It can dynamically estimate meteorology-induced hourly gridded emissions within the CMAQ modeling system using modeled meteorology. The CMAQ air quality modeling system is applied over the continental U.S. for two months (January and July 2019) for two emissions scenarios: a) current “offline” based onroad vehicle emissions, and b) “inline” CMAQ-MetEmis onroad vehicle emissions. Overall, the “MetEmis” coupler allows us to dynamically simulate onroad vehicle emissions from the MOVES onroad emission model for CMAQ with a better spatio-temporal representation compared to the “offline” scenario based on static temporal profiles. With an instance interpolation calculation approach, the new “inline” approach significantly enhances the computational efficiency and accuracy of estimating mobile source emissions, compared to the existing “offline” approach that yields almost identical hourly emission estimation. The domain total of daily VOC emissions from the “inline” scenario shows the largest impacts from the local meteorology, which is approximately 10 % lower than the ones from the “offline” scenario. Especially, the major difference of VOC estimates was shown over the California region. These local meteorology impacts on onroad vehicle emissions via CMAQ-MetEmis revealed an improvement in hourly NO2, daily maximum ozone, and daily average PM2.5 patterns with a higher agreement and correlation with daily ground observations.

Funder

National Oceanic and Atmospheric Administration

National Research Foundation of Korea

Korea Environmental Industry and Technology Institute

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3