Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools

Author:

Helfenstein Julian,Pistocchi Chiara,Oberson Astrid,Tamburini Federica,Goll Daniel S.ORCID,Frossard Emmanuel

Abstract

Abstract. Quantification of turnover of inorganic soil phosphorus (P) pools is essential to improve our understanding of P cycling in soil–plant systems and improve representations of the P cycle in land surface models. Turnover can be quantified using mean residence time (MRT); however, to date there is little information on MRT of P in soil P pools. We introduce an approach to quantify MRT of P in sequentially extracted inorganic soil P pools using data from isotope exchange kinetic experiments. Our analyses of 53 soil samples from the literature showed that MRT of labile P (resin- and bicarbonate-extractable P) was on the order of minutes to hours for most soils, MRT in NaOH-extractable P (NaOH-P) was in the range of days to months, and MRT in HCl-extractable P (HCl-P) was on the order of years to millennia. Multiple-regression models were able to capture 54 %–63 % of the variability in MRT among samples and showed that land use was the most important predictor of MRT of P in labile and NaOH pools. MRT of P in HCl-P was strongly dependent on pH, as high-pH soils tended to have longer MRTs. This was interpreted to be related to the composition of HCl-P. Under high pH, HCl-P contains mostly apatite, with a low solubility, whereas under low-pH conditions, HCl-P may contain more exchangeable P forms. These results suggest that current land surface models underestimate the dynamics of inorganic soil P pools and could be improved by reducing model MRTs of the labile and NaOH-P pools, considering soil-type-dependent MRTs rather than universal exchange rates and allowing for two-way exchange between HCl-P and the soil solution.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3