Errors in GNSS radio occultation data: relevance of the measurement geometry and obliquity of profiles

Author:

Foelsche U.,Syndergaard S.,Fritzer J.,Kirchengast G.

Abstract

Abstract. Atmospheric profiles retrieved from GNSS (Global Navigation Satellite System) radio occultation (RO) measurements are increasingly used to validate other measurement data. For this purpose it is important to be aware of the characteristics of RO measurements. RO data are frequently compared with vertical reference profiles, but the RO method does not provide vertical scans through the atmosphere. The average elevation angle of the tangent point trajectory (which would be 90° for a vertical scan) is about 40° at altitudes above 70 km, decreasing to about 25° at 20 km and to less than 5° below 3 km. In an atmosphere with high horizontal variability we can thus expect noticeable representativeness errors if the retrieved profiles are compared with vertical reference profiles. We have performed an end-to-end simulation study using high-resolution analysis fields (T799L91) from the European Centre for Medium-Range Weather Forecasts (ECMWF) to simulate a representative ensemble of RO profiles via high-precision 3-D ray tracing. Thereby we focused on the dependence of systematic and random errors on the measurement geometry, specifically on the incidence angle of the RO measurement rays with respect to the orbit plane of the receiving satellite, also termed azimuth angle, which determines the obliquity of RO profiles. We analyzed by how much errors are reduced if the reference profile is not taken vertical at the mean tangent point but along the retrieved tangent point trajectory (TPT) of the RO profile. The exact TPT can only be determined by performing ray tracing, but our results confirm that the retrieved TPT – calculated from observed impact parameters – is a very good approximation to the "true" one. Systematic and random errors in RO data increase with increasing azimuth angle, less if the TPT is properly taken in to account, since the increasing obliquity of the RO profiles leads to an increasing sensitivity to departures from horizontal symmetry. Up to an azimuth angle of 30°, however, this effect is small, even if the RO profiles are assumed to be vertical. For applications requiring highest accuracy and precision it is advisable to exclude RO profiles with ray incidence angles beyond an azimuth of 50°. Errors in retrieved atmospheric profiles decrease significantly, by up to a factor of 2, if the RO data are exploited along the retrieved TPT. The tangent point trajectory of RO profiles should therefore be exploited whenever this is possible.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3