Affiliation:
1. a NOAA/NESDIS/STAR, College Park, Maryland
2. b Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
Abstract
AbstractGlobal Navigation Satellite System (GNSS) radio occultation (RO) is a remote sensing technique that uses International System of Units (SI) traceable GNSS signals for atmospheric limb soundings. The retrieved atmospheric temperature profile is believed to be more accurate and stable than those from other remote sensing techniques, although rigorous comparison between independent measurements is difficult because of time and space differences between individual RO events. Typical RO comparisons are based on global statistics with relaxed matchup criteria (within 3 h and 250 km) that are less than optimal given the dynamic nature and spatial nonuniformity of the atmosphere. This study presents a novel method that allows for direct comparison of bending angles when simultaneous RO measurements occur near the simultaneous nadir overpasses (SNO) of two low-Earth-orbit satellites receiving the same GNSS signal passing through approximately the same atmosphere, within minutes in time and less than 125 km in distance. Using this method, we found very good agreement between Formosa Satellite 7 (FORMOSAT-7)/second Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) satellite measurements and those from MetOp-A/B/C, COSMIC-1, Korea Multi-Purpose Satellite 5 (KOMPSAT-5), and Paz, although systematic biases are also found in some of the intercomparisons. Instrument and processing algorithm performances at different altitudes are also characterized. It is expected that this method can be used for the validation of GNSS RO measurements for most missions and would be a new addition to the tools for intersatellite calibration. This is especially important given the large number of RO measurements made available both publicly and commercially, and the expansion of receiver capabilities to all GNSS systems.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献