Processing and Validation of the STAR COSMIC-2 Temperature and Water Vapor Profiles in the Neutral Atmosphere

Author:

Ho Shu-pengORCID,Kireev Stanislav,Shao Xi,Zhou Xinjia,Jing XinORCID

Abstract

The global navigation satellite system (GNSS) radio occultation (RO) is becoming an essential component of National Oceanic and Atmospheric Administration (NOAA) observation systems. The constellation observing system for meteorology, ionosphere, and climate (COSMIC) 2 mission and the Formosa satellite mission 7, a COSMIC follow-on mission, is now the NOAA’s backbone RO mission. The NOAA’s dedicated GNSS RO SAtellite processing and science Application Center (RO-SAAC) was established at the Center for Satellite Applications and Research (STAR). To better quantify how the observation uncertainty from clock error and geometry determination may propagate to bending angle and refractivity profiles, STAR has developed the GNSS RO data processing and validation system. This study describes the COSMIC-2 neutral atmospheric temperature and moisture profile inversion algorithms at STAR. We used RS41 and ERA5, and UCAR 1D-Var products (wetPrf2) to validate the accuracy and uncertainty of the STAR 1D-Var thermal profiles. The STAR-RS41 temperature differences are less than a few tenths of 1 K from 8 km to 30 km altitude with a standard deviation (std) of 1.5–2 K. The mean STAR-RS41 water vapor specific humidity difference and the standard deviation are −0.35 g/kg and 1.2 g/kg, respectively. We also used the 1D-Var-derived temperature and water vapor profiles to compute the simulated brightness temperature (BTs) for advanced technology microwave sounder (ATMS) and cross-track infrared sounder (CrIS) channels and compared them to the collocated ATMS and CrIS measurements. The BT differences of STAR COSMIC-2-simulated BTs relative to SNPP ATMS are less than 0.1 K over all ATMS channels.

Funder

Cooperative Institute for Satellite Earth System Studies—CISESS

Technology Maturity Program of NOAA OPPA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3