Ice nucleation ability of ammonium sulfate aerosol particles internally mixed with secondary organics

Author:

Bertozzi BarbaraORCID,Wagner RobertORCID,Song JunweiORCID,Höhler Kristina,Pfeifer JoschkaORCID,Saathoff Harald,Leisner Thomas,Möhler Ottmar

Abstract

Abstract. The abundance of aerosol particles and their ability to catalyze ice nucleation are key parameters to correctly understand and describe the aerosol indirect effect on the climate. Cirrus clouds strongly influence the Earth's radiative budget, but their effect is highly sensitive to their formation mechanism, which is still poorly understood. Sulfate and organics are among the most abundant aerosol components in the troposphere and have also been found in cirrus ice crystal residuals. Most of the studies on ice nucleation at cirrus cloud conditions looked at either purely inorganic or purely organic particles. However, particles in the atmosphere are mostly found as internal mixtures, the ice nucleation ability of which is not yet fully characterized. In this study, we investigated the ice nucleation ability of internally mixed particles composed of crystalline ammonium sulfate (AS) and secondary organic material (SOM) at temperatures between −50 and −65 ∘C. The SOM was generated from the ozonolysis of α-pinene. The experiments were conducted in a large cloud chamber, which also allowed us to simulate various aging processes that the particles may experience during their transport in the atmosphere, like cloud cycling and redistribution of the organic matter. We found that the ice nucleation ability of the mixed AS / SOM particles is strongly dependent on the particle morphology. Small organic mass fractions of 5 wt %–8 wt % condensed on the surface of AS crystals are sufficient to completely suppress the ice nucleation ability of the inorganic component, suggesting that the organic coating is evenly distributed on the surface of the seed particles. In this case, the ice nucleation onset increased from a saturation ratio with respect to ice Sice∼1.30 for the pure AS crystals to ≥1.45 for the SOM-coated AS crystals. However, if such SOM-coated AS crystals are subjected to the mentioned aging processes, they show an improved ice nucleation ability with the ice nucleation onset at Sice∼1.35. We suggest that the aging processes change the particle morphology. The organic matter might redistribute on the surface to form a partially engulfed structure, where the ice-nucleation-active sites of the AS crystals are no longer completely masked by the organic coating, or the morphology of the organic coating layer might transform from a compact to a porous structure. Our results underline the complexity in representing the ice nucleation ability of internally mixed particles in cloud models. They also demonstrate the need to further investigate the impact of atmospheric aging and cloud processing on the morphology and related ice nucleation ability of internally mixed particles.

Funder

Bundesministerium für Bildung und Forschung

Horizon 2020

Helmholtz-Gemeinschaft

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3