Downscaling system for modeling of atmospheric composition on regional, urban and street scales

Author:

Nuterman RomanORCID,Mahura Alexander,Baklanov AlexanderORCID,Amstrup Bjarne,Zakey Ashraf

Abstract

Abstract. In this study, the downscaling modeling chain for prediction of weather and atmospheric composition is described and evaluated against observations. The chain consists of interfacing models for forecasting at different spatiotemporal scales that run in a semi-operational mode. The forecasts were performed for European (EU) regional and Danish (DK) subregional-urban scales by the offline coupled numerical weather prediction HIRLAM and atmospheric chemical transport CAMx models, and for Copenhagen city-street scale by the online coupled computational fluid dynamics M2UE model. The results showed elevated NOx and lowered O3 concentrations over major urban, industrial, and transport land and water routes in both the EU and DK domain forecasts. The O3 diurnal cycle predictions in both these domains were equally good, although O3 values were closer to observations for Denmark. At the same time, the DK forecast of NOx and NO2 levels was more biased (with a better prediction score of the diurnal cycle) than the EU forecast, indicating a necessity to adjust emission rates. Further downscaling to the street level (Copenhagen) indicated that the NOx pollution was 2-fold higher on weekends and more than 5 times higher during the working day with high pollution episodes. Despite high uncertainty in road traffic emissions, the street-scale model effectively captured the NOx and NO2 diurnal cycles and the onset of elevated pollution episodes. The demonstrated downscaling system could be used in future online integrated meteorology and air quality research and operational forecasting, as well as for impact assessments on environment, population, and decision making for emergency preparedness and safety measures planning.

Funder

FP7 Environment

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference65 articles.

1. Aloyan, A., Baklanov, A., and Penenko, V.: Fictitious regions in numerical simulation of quarry ventilation, Soviet Meteorology and Hydrology, 7, 32–37, 1982.

2. Amstrup B., Baklanov, A., Feddersen, H., Lorenzen, T., Mahura, A., Nuterman, R., Weismann, J., Caian, M., Dumitrache, R., Rada, C., and Craciunescu, V.: Core-downstream processing chain test cases. Evaluation of current R-ENS individual and ensemble forecasts in the Copenhagen and Bucharest areas, in EU FP7 MACC Report D_OINT_2.4.1-2, edited by: Baklanov, A. and Mahura, A., Danish Meteorological Institute, Copenhagen, 36 pp., 2010a.

3. Amstrup B., Baklanov, A., Lorenzen, T., Mahura, A., Nuterman, R., Weismann, J., Banciu, D., Tascu, S., Pietrisi, M., Dumitrache, R., and Caian, M.: Core-downstream processing chain test cases. Setup of the two downscaling model configurations, in EU FP7 MACC Report D_OINT_2.5.1-2, edited by: Baklanov, A. and Nuterman, R., Danish Meteorological Institute, Copenhagen, 18 pp., 2010b.

4. Bai, L., Wang, J., Ma, X., and Lu, X.: Air Pollution Forecasts: An Overview, Int. J. Environ. Res. Pu., 15, 780, https://doi.org/10.3390/ijerph15040780, 2018.

5. Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3