A two-way coupled regional urban–street network air quality model system for Beijing, China

Author:

Wang Tao,Liu HangORCID,Li Jie,Wang Shuai,Kim YoungseobORCID,Sun YeleORCID,Yang Wenyi,Du Huiyun,Wang ZheORCID,Wang Zifa

Abstract

Abstract. Owing to the substantial traffic emissions in urban areas, especially near road areas, the concentrations of pollutants, such as ozone (O3) and its precursors, have a large difference compared to regional averages, and their distributions cannot be captured accurately by traditional single-scale air quality models. In this study, a new version of a regional urban–street network model (an Integrated Air Quality Modeling System coupling regional urban–street: IAQMS-street v2.0) is presented. An upscaling module is implemented in IAQMS-street v2.0 to calculate the impact of mass transfer to regional scale from street network. The influence of pollutants in the street network is considered in the concentration calculation on the regional scale, which is not considered in a previous version (IAQMS-street v1.0). In this study, the simulated results in Beijing during August 2021, using IAQMS-street v2.0, IAQMS-street v1.0, and the regional model (Nested Air Quality Prediction Modeling System, NAQPMS), are compared. On-road traffic emissions in Beijing, as the key model input data, were established using intelligent image-recognition technology and real-time traffic big data from navigation applications. The simulated results showed that the O3 and nitrogen oxide (NOx) concentrations in Beijing were reproduced by using IAQMS-street v2.0 on both the regional scale and street scale. The prediction fractions within a factor of 2 (FAC2s) between simulations and observations of NO and NO2 increased from 0.11 and 0.34 in NAQPMS to 0.78 and 1.00 in IAQMS-street v2.0, respectively. The normalized mean biases (NMBs) of NO and NO2 decreased from 2.67 and 1.33 to −0.25 and 0.08. In the coupled model, the concentration of NOx at the street scale is higher than that at the regional scale, and the simulated distribution of pollutants on a regional scale was improved in IAQMS-street v2.0 when compared with that in IAQMS-street v1.0. We further used IAQMS-street v2.0 to quantify the contribution of local on-road traffic emissions to the O3 and NOx emissions and analyze the effect of traffic regulation policies in Beijing. Results showed that heavy-duty trucks are the major source of on-road traffic emissions of NOx. The relative contributions of local traffic emissions to NO2, NO, and O3 concentrations were 53.41 %, 57.45 %, and 8.49 %, respectively. We found that traffic regulation policies in Beijing largely decreased the concentrations of NOx and hydrocarbons (HC); however, the O3 concentration near the road increased due to the decrease consumption of O3 by NO. To decrease the O3 concentration in urban areas, controlling the local emissions of HC and NOx from other sources requires consideration.

Funder

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3