Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements
-
Published:2021-09-16
Issue:18
Volume:21
Page:13729-13746
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Guo HaoORCID, Flynn Clare M., Prather Michael J.ORCID, Strode Sarah A.ORCID, Steenrod Stephen D., Emmons LouisaORCID, Lacey ForrestORCID, Lamarque Jean-FrancoisORCID, Fiore Arlene M.ORCID, Correa GusORCID, Murray Lee T.ORCID, Wolfe Glenn M.ORCID, St. Clair Jason M.ORCID, Kim MichelleORCID, Crounse JohnORCID, Diskin GlennORCID, DiGangi JoshuaORCID, Daube Bruce C., Commane RoisinORCID, McKain KathrynORCID, Peischl JeffORCID, Ryerson Thomas B.ORCID, Thompson ChelseaORCID, Hanisco Thomas F.ORCID, Blake Donald, Blake Nicola J., Apel Eric C., Hornbrook Rebecca S.ORCID, Elkins James W., Hintsa Eric J.ORCID, Moore Fred L., Wofsy Steven
Abstract
Abstract. The NASA Atmospheric Tomography (ATom) mission built a
photochemical climatology of air parcels based on in situ measurements with
the NASA DC-8 aircraft along objectively planned profiling transects through
the middle of the Pacific and Atlantic oceans. In this paper we present and
analyze a data set of 10 s (2 km) merged and gap-filled observations of the
key reactive species driving the chemical budgets of O3 and CH4
(O3, CH4, CO, H2O, HCHO, H2O2, CH3OOH,
C2H6, higher alkanes, alkenes, aromatics, NOx, HNO3,
HNO4, peroxyacetyl nitrate, other organic nitrates), consisting of
146 494 distinct air parcels from ATom deployments 1 through 4. Six models
calculated the O3 and CH4 photochemical tendencies from this
modeling data stream for ATom 1. We find that 80 %–90 % of the total
reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top
10 %, supporting previous model-only studies that tropospheric chemistry
is driven by a fraction of all the air. In other words, accurate simulation
of the least reactive 50 % of the troposphere is unimportant for global
budgets. Surprisingly, the probability densities of species and reactivities
averaged on a model scale (100 km) differ only slightly from the 2 km ATom
data, indicating that much of the heterogeneity in tropospheric chemistry
can be captured with current global chemistry models. Comparing the ATom
reactivities over the tropical oceans with climatological statistics from
six global chemistry models, we find excellent agreement with the loss of
O3 and CH4 but sharp disagreement with production of O3. The
models sharply underestimate O3 production below 4 km in both Pacific
and Atlantic basins, and this can be traced to lower NOx levels than
observed. Attaching photochemical reactivities to measurements of chemical
species allows for a richer, yet more constrained-to-what-matters, set of
metrics for model evaluation.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference29 articles.
1. Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R.
E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P.
H.: Chemical kinetics and photochemical data for use in atmospheric studies:
evaluation number 18, Pasadena, CA, Jet Propulsion Laboratory, National
Aeronautics and Space Administration, available at: http://hdl.handle.net/2014/45510 (last access: 13 September 2021),
2015. 2. Charlton-Perez, C. L., Evans, M. J., Marsham, J. H., and Esler, J. G.: The impact of resolution on ship plume simulations with NOx chemistry, Atmos. Chem. Phys., 9, 7505–7518, https://doi.org/10.5194/acp-9-7505-2009, 2009. 3. Douglass, A. R., Prather, M. J., Hall, T. M., Strahan, S. E., Rasch, P. J.,
Sparling, L. C., Coy, L., and Rodriguez, J. M.: Choosing meteorological input
for the global modeling initiative assessment of high-speed aircraft,
J. Geophys. Res.-Atmos., 104, 27545–27564,
https://doi.org/10.1029/1999JD900827, 1999. 4. Eastham, S. D. and Jacob, D. J.: Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes, Atmos. Chem. Phys., 17, 2543–2553, https://doi.org/10.5194/acp-17-2543-2017, 2017. 5. Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N. L., Archibald, A. T., Deushi, M., Emmons, L. K., Galbally, I. E., Hassler, B., Horowitz, L. W., Keeble, J., Liu, J., Moeini, O., Naik, V., O'Connor, F. M., Oshima, N., Tarasick, D., Tilmes, S., Turnock, S. T., Wild, O., Young, P. J., and Zanis, P.: Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, 2021.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|