Improved gridded ammonia emission inventory in China
-
Published:2021-10-25
Issue:20
Volume:21
Page:15883-15900
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Li BaojieORCID, Chen Lei, Shen Weishou, Jin JianbingORCID, Wang Teng, Wang PinyaORCID, Yang YangORCID, Liao Hong
Abstract
Abstract. As a major alkaline gas in the atmosphere, NH3 significantly impacts atmospheric chemistry, ecological environment, and biodiversity. Gridded NH3 emission inventories can significantly affect the accuracy of model concentrations and play a crucial role in the refinement of mitigation strategies. However, several uncertainties are still associated with existing NH3 emission inventories in China. Therefore, in this study, we focused on improving fertilizer-application-related NH3 emission inventories. We comprehensively evaluated the dates and times of fertilizer application to the major crops that are cultivated in China, improved the spatial allocation methods for NH3 emissions from croplands with different rice types, and established a gridded NH3 emission inventory for mainland China with a resolution of 5 min × 5 min in 2016. The results showed that the atmospheric NH3 emissions in mainland China amounted to 12.11 Tg, with livestock waste (44.8 %) and fertilizer application (38.6 %) being the two main NH3 emission sources in China. Obvious spatial variability in NH3 emissions was also identified, and high emissions were predominantly concentrated in North China. Further, NH3 emissions tended to be high in summer and low in winter, and the ratio for the July–January period was 3.08. Furthermore, maize and rice fertilization in summer was primarily responsible for the increase in NH3 emissions in China, and the evaluation of the spatial and temporal accuracy of the NH3 emission inventory established in this study using the WRF-Chem and ground-station- and satellite-based observations showed that it was more accurate than other inventories.
Funder
National Natural Science Foundation of China Natural Science Foundation of Jiangsu Province National Key Research and Development Program of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference71 articles.
1. Backes, A., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.: Ammonia
emissions in Europe, part I: Development of a dynamical ammonia emission
inventory, Atmos Environ, 131, 55-66, 10.1016/j.atmosenv.2016.01.041, 2016. 2. Bouwman, A., Boumans, L., and Batjes, N.: Estimation of global NH3
volatilization loss from synthetic fertilizers and animal manure applied to
arable lands and grasslands, Global Biogeochem. Cy., 16, 8-1–8-14, 2002. 3. Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek,
K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochem. Cy., 11, 561–587, https://doi.org/10.1029/97GB02266, 1997. 4. Cai, G. X., Chen, D. L., Ding, H., Pacholski, A., Fan, X. H., and Zhu, Z. L.: Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain, Nut. Cycl. Agroecosyst., 63, 187–195, https://doi.org/10.1023/A:1021198724250, 2002. 5. Chang, Y. H., Zou, Z., Deng, C. R., Huang, K., Collett, J. L., Lin, J., and
Zhuang, G. S.: The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai, Atmos. Chem. Phys., 16, 3577–3594, https://doi.org/10.5194/acp-16-3577-2016, 2016.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|