The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai

Author:

Chang YunhuaORCID,Zou Zhong,Deng Congrui,Huang Kan,Collett Jeffrey L.ORCID,Lin Jing,Zhuang Guoshun

Abstract

Abstract. Agricultural activities are a major source contributing to NH3 emissions in Shanghai and most other regions of China; however, there is a long-standing and ongoing controversy regarding the contributions of vehicle-emitted NH3 to the urban atmosphere. From April 2014 to April 2015, we conducted measurements of a wide range of gases (including NH3) and the chemical properties of PM2.5 at hourly resolution at a Shanghai urban supersite. This large data set shows NH3 pollution events, lasting several hours with concentrations 4 times the annual average of 5.3 µg m−3, caused by the burning of crop residues in spring. There are also generally higher NH3 concentrations (mean ± 1 σ) in summer (7.3 ± 4.9 µg m−3; n = 2181) because of intensive emissions from temperature-dependent agricultural sources. However, the NH3 concentration in summer was only an average of 2.4 µg m−3 or 41 % higher than the average NH3 concentration of other seasons. Furthermore, the NH3 concentration in winter (5.0 ± 3.7 µg m−3; n = 2113) was similar to that in spring (5.1 ± 3.8 µg m−3; n = 2198) but slightly higher, on average, than that in autumn (4.5 ± 2.3 µg m−3; n = 1949). Moreover, other meteorological parameters like planetary boundary layer height and relative humidity were not major factors affecting seasonal NH3 concentrations. These findings suggest that there may be some climate-independent NH3 sources present in the Shanghai urban area. Independent of season, the concentrations of both NH3 and CO present a marked bimodal diurnal profile, with maxima in the morning and the evening. A spatial analysis suggests that elevated concentrations of NH3 are often associated with transport from regions west–northwest and east–southeast of the city, areas with dense road systems. The spatial origin of NH3 and the diurnal concentration profile together suggest the importance of vehicle-derived NH3 associated with daily commuting in the urban environment. To further examine vehicular NH3 emissions and transport, sampling of the NH3 concentration was performed in (from the entrance to the exit of the tunnel) and out (along a roadside transect spanning 310 m perpendicular to the tunnel) of a heavily trafficked urban tunnel during the spring of 2014. NH3 concentrations in the tunnel exit were over 5 and 11 times higher than those in the tunnel entrance and in the ambient air, respectively. Based on the derived mileage-based NH3 emission factor of 28 mg km−1, a population of 3.04 million vehicles in Shanghai produced around 1300 t NH3 in 2014, which accounts for 12 % of total NH3 emissions in the urban area. Collectively, our results clearly show that vehicle emissions associated with combustion are an important NH3 source in Shanghai urban areas and may have potential implications for PM2.5 pollution in the urban atmosphere.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3