A 3-D evaluation of the MACC reanalysis dust product over Europe, northern Africa and Middle East using CALIOP/CALIPSO dust satellite observations
-
Published:2018-06-19
Issue:12
Volume:18
Page:8601-8620
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Georgoulias Aristeidis K., Tsikerdekis Athanasios, Amiridis VassilisORCID, Marinou EleniORCID, Benedetti AngelaORCID, Zanis Prodromos, Alexandri Georgia, Mona Lucia, Kourtidis Konstantinos A.ORCID, Lelieveld JosORCID
Abstract
Abstract. The MACC reanalysis dust product is evaluated over Europe,
northern Africa and the Middle East using the EARLINET-optimized
CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). MACC
dust optical depth at 550 nm (DOD550) data are compared against LIVAS
DOD532 observations. As only natural aerosol (dust and sea salt)
profiles are available in MACC, here we focus on layers above 1 km a.s.l.
to diminish the influence of sea salt particles that typically reside at low
heights. So, MACC natural aerosol extinction coefficient profiles at 550 nm
are compared against dust extinction coefficient profiles at 532 nm from
LIVAS, assuming that the MACC natural aerosol profile data can be similar to
the dust profile data, especially over pure continental regions. It is shown
that the reanalysis data are capable of capturing the major dust hot spots in
the area as the MACC DOD550 patterns are close to the LIVAS DOD532
patterns throughout the year. MACC overestimates DOD for regions with low
dust loadings and underestimates DOD for regions with high dust loadings
where DOD exceeds ∼ 0.3. The mean bias between the MACC and LIVAS DOD
is 0.025 (∼ 25 %) over the whole domain. Both MACC and LIVAS
capture the summer and spring high dust loadings, especially over northern
Africa and the Middle East, and exhibit similar monthly structures despite
the biases. In this study, dust extinction coefficient patterns are reported
at four layers (layer 1: 1200–3000 m a.s.l., layer 2:
3000–4800 m a.s.l., layer 3: 4800–6600 m a.s.l. and layer 4:
6600–8400 m a.s.l.). The MACC and LIVAS extinction coefficient patterns
are similar over areas characterized by high dust loadings for the first
three layers. Within layer 4, MACC overestimates extinction coefficients
consistently throughout the year over the whole domain. MACC overestimates
extinction coefficients compared to LIVAS over regions away from the major
dust sources while over regions close to the dust sources (the Sahara and
Middle East) it underestimates strongly only for heights below
∼ 3–5 km a.s.l. depending on the period of the year. In general, it
is shown that dust loadings appear over remote regions and at heights up to
9 km a.s.l. in MACC contrary to LIVAS. This could be due to the model
performance and parameterizations of emissions and other processes, due to
the assimilation of satellite aerosol measurements over dark surfaces only or
due to a possible enhancement of aerosols by the MACC assimilation system.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference60 articles.
1. Alastuey, A., Querol, X., Aas, W., Lucarelli, F., Pérez, N., Moreno, T.,
Cavalli, F., Areskoug, H., Balan, V., Catrambone, M., Ceburnis, D., Cerro, J.
C., Conil, S., Gevorgyan, L., Hueglin, C., Imre, K., Jaffrezo, J.-L., Leeson,
S. R., Mihalopoulos, N., Mitosinkova, M., O'Dowd, C. D., Pey, J., Putaud,
J.-P., Riffault, V., Ripoll, A., Sciare, J., Sellegri, K., Spindler, G., and
Yttri, K. E.: Geochemistry of PM10 over Europe during the EMEP intensive
measurement periods in summer 2012 and winter 2013, Atmos. Chem. Phys., 16,
6107–6129, https://doi.org/10.5194/acp-16-6107-2016, 2016. 2. Alexandri, G., Georgoulias, A. K., Meleti, C., Balis, D., Kourtidis, K. A.,
Sanchez-Lorenzo, A., Trentmann, J., and Zanis, P.: A high resolution
satellite view of surface solar radiation over the climatically sensitive
region of Eastern Mediterranean, Atmos. Res., 188, 107–121,
https://doi.org/10.1016/j.atmosres.2016.12.015, 2017. 3. Amiridis, V., Wandinger, U., Marinou, E., Giannakaki, E., Tsekeri, A.,
Basart, S., Kazadzis, S., Gkikas, A., Taylor, M., Baldasano, J., and Ansmann,
A.: Optimizing CALIPSO Saharan dust retrievals, Atmos. Chem. Phys., 13,
12089–12106, https://doi.org/10.5194/acp-13-12089-2013, 2013. 4. Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A.,
Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S.,
Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M.,
Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N.,
Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D
multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos.
Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. 5. Andersen, H., Cermak, J., Fuchs, J., and Schwarz, K.: Global observations of
cloud-sensitive aerosol loadings in low-level marine clouds, J. Geophys.
Res.-Atmos., 121, 12936–12946, https://doi.org/10.1002/2016JD025614, 2016.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|