Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV)

Author:

Nicolaus M.,Katlein C.ORCID

Abstract

Abstract. Transmission of sunlight into and through sea ice is of critical importance for sea-ice associated organisms and photosynthesis because light is their primary energy source. The amount of visible light transferred through sea ice contributes to the energy budget of the sea ice and the uppermost ocean. However, our current knowledge on the amount and distribution of light under sea ice is still restricted to a few local observations, and our understanding of light-driven processes and interdisciplinary interactions is still sparse. The main reasons are that the under-ice environment is difficult to access and that measurements require large logistical and instrumental efforts. Hence, it has not been possible to map light conditions under sea ice over larger areas and to quantify spatial variability on different scales. Here we present a detailed methodological description for operating spectral radiometers on a remotely operated vehicle (ROV) under sea ice. Recent advances in ROV and radiation-sensor technology have allowed us to map under-ice spectral radiance and irradiance on floe scales within a few hours of station time. The ROV was operated directly from the sea ice, allowing for direct relations of optical properties to other sea-ice and surface features. The ROV was flown close to the sea ice in order to capture small-scale variability. Results from the presented data set and similar future studies will allow for better quantification of light conditions under sea ice. The presented experiences will support further developments in order to gather large data sets of under-ice radiation for different ice conditions and during different seasons.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Reference27 articles.

1. Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W. K., Ortega-Retuerta, E., Pal, S., Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., and Swift, J. H.: Massive Phytoplankton Blooms Under Arctic Sea Ice, Science, 336, 6087, https://doi.org/10.1126/science.1215065, 2012.

2. Deal, C., Jin, M. B., Elliott, S., Hunke, E., Maltrud, M., and Jeffery, N.: Large-scale modeling of primary production and ice algal biomass within arctic sea ice in 1992, J. Geophys. Res.-Oceans, 116, C07004, https://doi.org/10.1029/2010jc006409, 2011.

3. Ehn, J. K., Mundy, C. J., Barber, D. G., Hop, H., Rossnagel, A., and Stewart, J.: Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic, J. Geophys. Res.-Oceans, 116, C00G02, https://doi.org/10.1029/2010jc006908, 2011.

4. Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge, J. A., and Frey, K.: Hydraulic controls of summer Arctic pack ice albedo, J. Geophys. Res., 109, C08007, https://doi.org/10.1029/2003JC001989, 2004.

5. Ficek, D., Kaczmarek, S., Ston-Egiert, J., Wozniak, B., Majchrowski, R., and Dera, J.: Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46, 533–555, 2004.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3