Soil organic carbon storage changes in coastal wetlands of the modern Yellow River Delta from 2000 to 2009
-
Published:2012-06-28
Issue:6
Volume:9
Page:2325-2331
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Yu J.,Wang Y.,Li Y.,Dong H.,Zhou D.,Han G.,Wu H.,Wang G.,Mao P.,Gao Y.
Abstract
Abstract. Soil carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. The storages and dynamics of soil organic carbon (SOC) of 0–30 cm soil depth in different landscape types including beaches, reservoir and pond, reed wetland, forest wetland, bush wetland, farmland, building land, bare land (severe saline land) and salt field in the modern Yellow River Delta (YRD) were studied based on the data of the regional survey and laboratory analysis. The landscape types were classified by the interpretation of remote sensing images of 2000 and 2009, which were calibrated by field survey results. The results revealed an increase of 10.59 km2 in the modem YRD area from 2000 to 2009. The SOC density varied ranging from 0.73 kg m−2 to 4.25 kg m−2 at depth of 0–30 cm. There were approx. 3.559 × 106 t and 3.545 × 106 t SOC stored in the YRD in 2000 and 2009, respectively. The SOC storages changed greatly in beaches, bush wetland, farm land and salt field which were affected dominantly by anthropogenic activities. The area of the YRD increased greatly within 10 years, however, the small increase of SOC storage in the region was observed due to landscape changes, indicating that the modern YRD was a potential carbon sink and anthropogenic activity was a key factor for SOC change.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference51 articles.
1. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. 2. Bedard-Haughn, A.: The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes (vol. 135, p. 296, 2006), Geoderma, 138, 272–272, 2007. 3. Clark, J. M., Lane, S. N., Chapman, P. J., and Adamson, J. K.: Export of dissolved organic carbon from an upland peatland during storm events: Implications for flux estimates, J. Hydrol., 347, 438–447, 2007. 4. Costanza, R., dArge, R., deGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., ONeill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., and vandenBelt, M.: The value of the world's ecosystem services and natural capital, Nature, 387, 253–260, 1997. 5. Cui, B. S., Yang, Q. C., Yang, Z. F., and Zhang, K. J.: Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China, Ecol. Eng., 35, 1090–1103, 2009.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|