GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): a new tool for identifying and monitoring supraglacial landslide inputs

Author:

Smith William D.ORCID,Dunning Stuart A.,Brough StephenORCID,Ross NeilORCID,Telling JonORCID

Abstract

Abstract. Landslides in glacial environments are high-magnitude, long-runout events, believed to be increasing in frequency as a paraglacial response to ice retreat and thinning and, arguably, due to warming temperatures and degrading permafrost above current glaciers. However, our ability to test these assumptions by quantifying the temporal sequencing of debris inputs over large spatial and temporal extents is limited in areas with glacier ice. Discrete landslide debris inputs, particularly in accumulation areas, are rapidly “lost”, being reworked by motion and icefalls and/or covered by snowfall. Although large landslides can be detected and located using their seismic signature, smaller (M≤5.0) landslides frequently go undetected because their seismic signature is less than the noise floor, particularly supraglacially deposited landslides, which feature a “quiet” runout over snow. Here, we present GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): a new free-to-use tool leveraging Landsat 4–8 satellite imagery and Google Earth Engine. GERALDINE outputs maps of new supraglacial debris additions within user-defined areas and time ranges, providing a user with a reference map, from which large debris inputs such as supraglacial landslides (>0.05 km2) can be rapidly identified. We validate the effectiveness of GERALDINE outputs using published supraglacial rock avalanche inventories, and then demonstrate its potential by identifying two previously unknown, large (>2 km2) landslide-derived supraglacial debris inputs onto glaciers in the Hayes Range, Alaska, one of which was not detected seismically. GERALDINE is a first step towards a complete global magnitude–frequency of landslide inputs onto glaciers over the 38 years of Landsat Thematic Mapper imagery.

Funder

Newcastle University

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3