A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts

Author:

Anderson Robert S.

Abstract

AbstractMedial moraines form striking dark stripes that widen non-linearly, steepen laterally and increase in relief down-glacier from the equilibrium line. Coalescence of these low-ablation-rate features can feed back strongly on the mass balance of a glacier snout. Ablation-dominated medial moraines originate from debris delivered to glacier margins, producing a debris-rich septum between tributary streams of ice below their confluence. Emergence of this ice below the equilibrium line delivers debris to the glacier surface, which then moves down local slopes of evolving morainal topography. A quantitative description of moraine evolution requires specification of the debris concentration field within the glacier, treatment of the melt-rate dependence on debris thickness, and characterization of processes that transport debris once it emerges onto the ice surface. Debris concentration at glacier tributary junctions scales with the erosion rates and the lengths of the tributary-valley walls, and inversely with the tributary ice speeds. Melt rate is damped exponentially by debris, with a ∼10 cm decay scale. Debris flux across the glacier surface scales with the product of debris thickness and local slope. Analytical and numerical results show that medial moraines should develop cross-glacier profiles with parabolic crests and linear slopes, and should widen with age and hence distance down-glacier. Debris should be both thin and uniform over the moraine. Observed faster-than-linear growth of moraine widths with distance reflects the increasing ablation rate down-glacier. Increase in medial moraine cover reduces the local average ablation rate, allowing the glacier to extend further down-valley than meteorology alone would suggest. This feedback is especially effective when moraines merge.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3