Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus

Author:

Sedlar J.,Shupe M. D.ORCID

Abstract

Abstract. Over the Arctic Ocean, little is known, observationally, on cloud-generated buoyant overturning vertical motions within mixed-phase stratocumulus clouds. Characteristics of such motions are important for understanding the diabatic processes associated with the vertical motions, the lifetime of the cloud layer and its micro- and macrophysical characteristics. In this study, we exploit a suite of surface-based remote sensors over the high Arctic sea ice during a week-long period of persistent stratocumulus in August 2008 to derive the in-cloud vertical motion characteristics. In-cloud vertical velocity skewness and variance profiles are found to be strikingly different from observations within lower-latiatude stratocumulus, suggesting these Arctic mixed-phase clouds interact differently with the atmospheric thermodynamics (cloud tops extending above a stable temperature inversion base) and with a different coupling state between surface and cloud. We find evidence of cloud-generated vertical mixing below cloud base, regardless of surface-cloud coupling state, although a decoupled surface-cloud state occurred most frequently. Detailed case studies are examined focusing on 3 levels within the cloud layer, where wavelet and power spectral analyses are applied to characterize the dominant temporal and horizontal scales associated with cloud-generated vertical motions. In general, we find a positively-correlated vertical motion signal across the full cloud layer depth. The coherency is dependent upon other non-cloud controlled factors, such as larger, mesoscale weather passages and radiative shielding of low-level stratocumulus by multiple cloud layers above. Despite the coherency in vertical velocity across the cloud, the velocity variances were always weaker near cloud top, relative to cloud mid and base. Taken in combination with the skewness, variance and thermodynamic profile characteristics, we observe vertical motions near cloud-top that behave differently than those from lower within the cloud layer. Spectral analysis indicates peak cloud-generated w variance timescales slowed only modestly during decoupled cases relative to coupled; horizontal wavelengths only slightly increased when transitioning from coupling to decoupling. The similarities in scales suggests that perhaps the dominant forcing for all cases is generated from the cloud layer, and it is not the surface forcing that characterizes the time and space scales of in-cloud vertical velocity variance. This points toward the resilient nature of Arctic mixed-phase clouds to persist when characterized by thermodynamic regimes unique to the Arctic.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3