Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation
-
Published:2021-12-21
Issue:12
Volume:14
Page:7929-7957
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Griffin DeboraORCID, McLinden Chris A.ORCID, Dammers Enrico, Adams Cristen, Stockwell Chelsea E.ORCID, Warneke Carsten, Bourgeois IlannORCID, Peischl JeffORCID, Ryerson Thomas B.ORCID, Zarzana Kyle J.ORCID, Rowe Jake P., Volkamer RainerORCID, Knote ChristophORCID, Kille NatalieORCID, Koenig Theodore K.ORCID, Lee Christopher F.ORCID, Rollins Drew, Rickly Pamela S.ORCID, Chen JackORCID, Fehr Lukas, Bourassa Adam, Degenstein Doug, Hayden Katherine, Mihele Cristian, Wren Sumi N., Liggio John, Akingunola Ayodeji, Makar Paul
Abstract
Abstract. Smoke from wildfires is a significant source of air pollution, which can adversely impact air quality and ecosystems downwind. With the recently increasing intensity and severity of wildfires, the threat to air quality is expected to increase. Satellite-derived biomass burning emissions can fill in gaps in the absence of aircraft or ground-based measurement campaigns and can help improve the online calculation of biomass burning emissions as well as the biomass burning emissions inventories that feed air quality models. This study focuses on satellite-derived NOx emissions using the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI) NO2 dataset. Advancements and improvements to the satellite-based determination of forest fire NOx emissions are discussed, including information on plume height and effects of aerosol scattering and absorption on the satellite-retrieved vertical column densities. Two common top-down emission estimation methods, (1) an exponentially modified Gaussian (EMG) and (2) a flux method, are applied to synthetic data to determine the accuracy and the sensitivity to different parameters, including wind fields, satellite sampling, noise, lifetime, and plume spread. These tests show that emissions can be accurately estimated from single TROPOMI overpasses.
The effect of smoke aerosols on TROPOMI NO2 columns (via air mass factors, AMFs) is estimated, and these satellite columns and emission estimates are compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America. Our results indicate that applying an explicit aerosol correction to the TROPOMI NO2 columns improves the agreement with the aircraft observations (by about 10 %–25 %). The aircraft- and satellite-derived emissions are in good agreement within the uncertainties. Both top-down emissions methods work well; however, the EMG method seems to output more consistent results and has better agreement with the aircraft-derived emissions. Assuming a Gaussian plume shape for various biomass burning plumes, we estimate an average NOx e-folding time of 2 ±1 h from TROPOMI observations. Based on chemistry transport model simulations and aircraft observations, the net emissions of NOx are 1.3 to 1.5 times greater than the satellite-derived NO2 emissions. A correction factor of 1.3 to 1.5 should thus be used to infer net NOx emissions from the satellite retrievals of NO2.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference84 articles.
1. Adams, C., McLinden, C. A., Shephard, M. W., Dickson, N., Dammers, E., Chen, J., Makar, P., Cady-Pereira, K. E., Tam, N., Kharol, S. K., Lamsal, L. N., and Krotkov, N. A.: Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area, Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, 2019. a, b, c, d, e, f 2. Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. a 3. Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J. P., Loyola, D., Eskes,
H., van Geffenm, J., and Boersma, F.: Sentinel-5 precursor/TROPOMI Level 2
Product User Manual Nitrogendioxide, CI-7570-PUM, s5P-KNMI-L2-0021-MA, available at:
https://sentinels.copernicus.eu/documents/247904/2474726/ (last access: 10 December 2021),
2017. a 4. Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.:
Megacity Emissions and Lifetimes of Nitrogen Oxides Probed from Space,
Science, 333, 1737–1739, https://doi.org/10.1126/science.1207824, 2011. a 5. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos.,
106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. a
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|