Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area

Author:

Adams Cristen,McLinden Chris A.ORCID,Shephard Mark W.ORCID,Dickson Nolan,Dammers Enrico,Chen JackORCID,Makar Paul,Cady-Pereira Karen E.,Tam Naomi,Kharol Shailesh K.,Lamsal Lok N.,Krotkov Nickolay A.ORCID

Abstract

Abstract. In May 2016, the Horse River wildfire led to the evacuation of ∼ 88 000 people from Fort McMurray and surrounding areas and consumed ∼ 590 000 ha of land in Northern Alberta and Saskatchewan. Within the plume, satellite instruments measured elevated values of CO, NH3, and NO2. CO was measured by two Infrared Atmospheric Sounding Interferometers (IASI-A and IASI-B), NH3 by IASI-A, IASI-B, and the Cross-track Infrared Sounder (CrIS), and NO2 by the Ozone Monitoring Instrument (OMI). Daily emission rates were calculated from the satellite measurements using fire hotspot information from the Moderate Resolution Imaging Spectroradiometer (MODIS) and wind information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis, combined with assumptions on lifetimes and the altitude range of the plume. Sensitivity tests were performed and it was found that uncertainties of emission estimates are more sensitive to the plume shape for CO and to the lifetime for NH3 and NOx. The satellite-derived emission rates were ∼ 50–300 kt d−1 for CO, ∼ 1–7 kt d−1 for NH3, and ∼ 0.5–2 kt d−1 for NOx (expressed as NO) during the most active fire periods. The daily satellite-derived emission estimates were found to correlate fairly well (R∼0.4–0.7) with daily output from the ECMWF Global Fire Assimilation System (GFAS) and the Environment and Climate Change Canada (ECCC) FireWork models, with agreement within a factor of 2 for most comparisons. Emission ratios of NH3∕CO, NOx∕CO, and NOx∕NH3 were calculated and compared against enhancement ratios of surface concentrations measured at permanent surface air monitoring stations and by the Alberta Environment and Parks Mobile Air Monitoring Laboratory (MAML). For NH3∕CO, the satellite emission ratios of ∼ 0.02 are within a factor of 2 of the model emission ratios and surface enhancement ratios. For NOx∕CO satellite-measured emission ratios of ∼0.01 are lower than the modelled emission ratios of 0.033 for GFAS and 0.014 for FireWork, but are larger than the surface enhancement ratios of ∼0.003, which may have been affected by the short lifetime of NOx. Total emissions from the Horse River fire for May 2016 were calculated and compared against total annual anthropogenic emissions for the province of Alberta in 2016 from the ECCC Air Pollutant Emissions Inventory (APEI). Satellite-measured emissions of CO are ∼1500 kt for the Horse River fire and exceed the total annual Alberta anthropogenic CO emissions of 992.6 kt for 2016. The satellite-measured emissions during the Horse River fire of ∼30 kt of NH3 and ∼7 kt of NOx (expressed as NO) are approximately 20 % and 1 % of the magnitude of total annual Alberta anthropogenic emissions, respectively.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference85 articles.

1. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.

2. Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles emitted by a chaparral fire in California, Atmos. Chem. Phys., 12, 1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012.

3. Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.-E., Perring, A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R., Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., Clair, J. M. St., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739–9760, https://doi.org/10.5194/acp-10-9739-2010, 2010.

4. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.

5. Bauduin, S., Clarisse, L., Theunissen, M., George, M., Hurtmans, D., Clerbaux, C. and Coheur, P.: IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases, J. Quant. Spectrosc. Ra., 189, 428–440, https://doi.org/10.1016/j.jqsrt.2016.12.022, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3