Inpainting radar missing data regions with deep learning

Author:

Geiss Andrew,Hardin Joseph C.ORCID

Abstract

Abstract. Missing and low-quality data regions are a frequent problem for weather radars. They stem from a variety of sources: beam blockage, instrument failure, near-ground blind zones, and many others. Filling in missing data regions is often useful for estimating local atmospheric properties and the application of high-level data processing schemes without the need for preprocessing and error-handling steps – feature detection and tracking, for instance. Interpolation schemes are typically used for this task, though they tend to produce unrealistically spatially smoothed results that are not representative of the atmospheric turbulence and variability that are usually resolved by weather radars. Recently, generative adversarial networks (GANs) have achieved impressive results in the area of photo inpainting. Here, they are demonstrated as a tool for infilling radar missing data regions. These neural networks are capable of extending large-scale cloud and precipitation features that border missing data regions into the regions while hallucinating plausible small-scale variability. In other words, they can inpaint missing data with accurate large-scale features and plausible local small-scale features. This method is demonstrated on a scanning C-band and vertically pointing Ka-band radar that were deployed as part of the Cloud Aerosol and Complex Terrain Interactions (CACTI) field campaign. Three missing data scenarios are explored: infilling low-level blind zones and short outage periods for the Ka-band radar and infilling beam blockage areas for the C-band radar. Two deep-learning-based approaches are tested, a convolutional neural network (CNN) and a GAN that optimize pixel-level error or combined pixel-level error and adversarial loss respectively. Both deep-learning approaches significantly outperform traditional inpainting schemes under several pixel-level and perceptual quality metrics.

Funder

U.S. Department of Energy

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3