Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements

Author:

Li Xinyan,Yang Yuanjian,Mi Jiaqin,Bi Xueyan,Zhao You,Huang Zehao,Liu Chao,Zong Lian,Li Wanju

Abstract

Abstract. Deriving large-scale and high-quality precipitation products from satellite remote-sensing spectral data is always challenging in quantitative precipitation estimation (QPE), and limited studies have been conducted even using China's latest Fengyun-4A (FY-4A) geostationary satellite. Taking three rainstorm events over South China as examples, a machine-learning-based regression model was established using the random forest (RF) method to derive QPE from FY-4A observations, in conjunction with cloud parameters and physical quantities. The cross-validation results indicate that both daytime (DQPE) and nighttime (NQPE) RF algorithms performed well in estimating QPE, with the bias score, correlation coefficient and root-mean-square error of DQPE (NQPE) of 2.17 (2.42), 0.79 (0.83) and 1.77 mm h−1 (2.31 mm h−1), respectively. Overall, the algorithm has a high accuracy in estimating precipitation under the heavy-rain level or below. Nevertheless, the positive bias still implies an overestimation of precipitation by the QPE algorithm, in addition to certain misjudgements from non-precipitation pixels to precipitation events. Also, the QPE algorithm tends to underestimate the precipitation at the rainstorm or even above levels. Compared to single-sensor algorithms, the developed QPE algorithm can better capture the spatial distribution of land-surface precipitation, especially the centre of strong precipitation. Marginal difference between the data accuracy over sites in urban and rural areas indicate that the model performs well over space and has no evident dependence on landscape. In general, our proposed FY-4A QPE algorithm has advantages for quantitative estimation of summer precipitation over East Asia.

Funder

National College Students Innovation and Entrepreneurship Training Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3