A Novel Double Machine Learning Strategy for Producing High‐Precision Multi‐Source Merging Precipitation Estimates Over the Tibetan Plateau

Author:

Lyu Yi12ORCID,Yong Bin12ORCID

Affiliation:

1. National Key Laboratory of Water Disaster Prevention Hohai University Nanjing China

2. College of Hydrology and Water Resources Hohai University Nanjing China

Abstract

AbstractPrecipitation estimation over the Tibetan Plateau is a critical but challenging task due to sparse gauges and high altitudes. Traditional statistic methods are often insufficient to characterize the nonlinear relationship between different precipitation information, while machine learning techniques, particularly deep learning algorithms, offer a novel and powerful approach to improve the merging accuracy of multi‐source precipitation data by efficiently capturing their spatiotemporal dynamics features. This study introduced a novel strategy called Double Machine Learning (DML), which integrates meteorological information, satellite retrievals, and reanalysis data to produce a high‐precision multi‐source merging precipitation product at 0.1° × 0.1°, daily resolution for the Tibetan Plateau. The quantitative evaluation of DML was accomplished using both auto‐meteorological gauges and independent observations. Statistical scores indicate that the new DML‐based merging product apparently outperforms three widely‐used precipitation datasets (IMERG‐Final, GSMaP‐Gauge and ERA5) over the Tibetan Plateau. The proposed DML strategy effectively integrates the advantages of traditional machine learning and deep learning, significantly enhancing the algorithmic robustness and merging accuracy, particularly at medium‐high rain rates in summer. Furthermore, the contributions of multi‐source inputs to the final merging effect was systematically analyzed. It is found that meteorological information, as an auxiliary variable in DML, plays a crucial role in identifying rainy events and adjusting the bias of precipitation estimates, especially over those ungauged regions. This study affirms the call for improving the multi‐source precipitation estimates by combining different machine learning approaches. The new merging precipitation product reported here is recommended for hydrometeorological users of the Tibetan Plateau science community.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3