Can seafloor voltage cables be used to study large-scale circulation? An investigation in the Pacific Ocean

Author:

Velímský JakubORCID,Schnepf Neesha R.ORCID,Nair Manoj C.,Thomas Natalie P.

Abstract

Abstract. Marine electromagnetic (EM) signals largely depend on three factors: flow velocity, Earth's main magnetic field, and seawater's electrical conductivity (which depends on the local temperature and salinity). Because of this, there has been recent interest in using marine EM signals to monitor and study ocean circulation. Our study utilizes voltage data from retired seafloor telecommunication cables in the Pacific Ocean to examine whether such cables could be used to monitor circulation velocity or transport on large oceanic scales. We process the cable data to isolate the seasonal and monthly variations and then evaluate the correlation between the processed data and numerical predictions of the electric field induced by an estimate of ocean circulation. We find that the correlation between cable voltage data and numerical predictions strongly depends on both the strength and coherence of the model velocities flowing across the cable, the local EM environment, as well as the length of the cable. The cable within the Kuroshio Current had good correlation between data and predictions, whereas two of the cables in the Eastern Pacific Gyre – a region with both low flow speeds and interfering velocity directions across the cable – did not have any clear correlation between data and predictions. Meanwhile, a third cable also located in the Eastern Pacific Gyre showed good correlation between data and predictions – although the cable is very long and the speeds were low, it was located in a region of coherent flow velocity across the cable. While much improvement is needed before utilizing seafloor voltage cables to study and monitor oceanic circulation across wide regions, we believe that with additional work, the answer to the question of whether or not seafloor voltage cables can be used to study large-scale circulation may eventually be yes.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference47 articles.

1. Baringer, M. O. and Larsen, J. C.: Sixteen years of Florida Current Transport at 27∘ N, Geophys. Res. Lett., 28, 3179–3182, 2001. a

2. Chave, A. D., Filloux, J. H., and Luther, D. S.: Electromagnetic induction by ocean currents: BEMPEX, Phys. Earth Planet. In., 53, 350–359, https://doi.org/10.1016/0031-9201(89)90021-6, 1989. a

3. Chave, A. D., Luther, D. S., Lanzerotti, L. J., and Medford, L. V.: Geoelectric field measurements on a planetary scale: oceanographic and geophysical applications, Geophys. Res. Lett., 19, 1411–1414, 1992. a, b

4. Cox, C. S., Filloux, J. H., and Larsen, J. C.: Electromagnetic studies of ocean currents and electrical conductivity below the ocean-floor, in: The Sea, Wiley, New York, ISBN: 0674-01732-3, 637–693, 1971. a

5. Denig, W. F.: Geomagnetic kp and ap Indices, available at: http://www.ngdc.noaa.gov/stp/GEOMAG/kp_ap.html (last access: 15 February 2021), 2015. a

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3