A Prototype for Remote Monitoring of Ocean Heat Content Anomalies

Author:

Trossman David S.123,Tyler Robert H.45

Affiliation:

1. a Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana

2. b Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana

3. c Global Science and Technology, NOAA/NESDIS/STAR, College Park, Maryland

4. d Geodesy and Geophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

5. e Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Abstract

Abstract To overcome challenges with observing ocean heat content (OHC) over the entire ocean, we propose a novel approach that exploits the abundance of satellite data, including data from modern satellite geomagnetic surveys such as Swarm. The method considers a novel combination of conventional in situ (temperature and pressure) as well as satellite (altimetry and gravimetry) data with estimates of ocean electrical conductance (depth-integrated conductivity), which can potentially be obtained from magnetic observations (by satellite, land, seafloor, ocean, and airborne magnetometers). To demonstrate the potential benefit of the proposed method, we sample model output of an ocean state estimate to reflect existing observations and train a machine learning algorithm [Generalized Additive Model (GAM)] on these samples. We then calculate OHC everywhere using information potentially derivable from various global satellite coverage—including magnetic observations—to gauge the GAM’s goodness of fit on a global scale. Inclusion of in situ observations of OHC in the upper 2000 m from Argo-like floats and conductance data each reduce the root-mean-square error by an order of magnitude. Retraining the GAM with recent ship-based hydrographic data attains a smaller RMSE in polar oceans than training the GAM only once on all available historical ship-based hydrographic data; the opposite is true elsewhere. The GAM more accurately calculates OHC anomalies throughout the water column than below 2000 m and can detect global OHC anomalies over multiyear time scales, even when considering hypothetical measurement errors. Our method could complement existing methods and its accuracy could be improved through careful ship-based campaign planning. Significance Statement The purpose of this manuscript is to demonstrate the potential for practical implementation of a remote monitoring method for ocean heat content (OHC) anomalies. To do this, we sample data from a reanalysis product primarily because of the dearth of observations below 2000 m depth that can be used for validation and the fact that full-depth-integrated electrical seawater conductivity data products derived from satellite magnetometry are not yet available. We evaluate multiple factors related to the accuracy of OHC anomaly estimation and find that, even with hypothetical measurement errors, our method can be used to monitor OHC anomalies on multiyear time scales.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3