The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of an urban canopy

Author:

Adderley C.,Christen A.ORCID,Voogt J. A.

Abstract

Abstract. Any radiometer at a fixed location has a biased view when observing a convoluted, three-dimensional surface such as an urban canopy. The goal of this contribution is to determine the bias of various sensors views observing a simple urban residential neighbourhood (nadir, oblique, hemispherical) over a 24 hour cycle under clear weather conditions. The error in measuring a longwave radiation flux density (L) and/or inferring surface temperatures (T0) is quantified for different times over a diurnal cycle. Panoramic time-sequential thermography (PTST) data were recorded by a thermal camera on a hydraulic mast above a residential canyon in Vancouver, BC. The data set resolved sub-facet temperature variability of all representative urban facets in a 360° swath repetitively over a 24-hour cycle. This data set is used along with computer graphics and vision techniques to project measured fields of L for a given time and pixel onto texture sheets of a three-dimensional urban surface model at a resolution of centimetres. The resulting data set attributes L of each pixel on the texture sheets to different urban facets and associates facet location, azimuth, slope, material, and sky view factor. The texture sheets of L are used to calculate the complete surface temperature (T0,C) and to simulate the radiation in the field of view (FOV) of narrow and hemispheric radiometers observing the same urban surface (in absence of emissivity and atmospheric effects). The simulated directional (T0,d) and hemispheric (T0,h) radiometric temperatures inferred from various biased views are compared to T0,C. For a range of simulated off-nadir (φ) and azimuth (Ω) angles, T0,d(φ,Ω) and T0,C differ between −2.6 and +2.9 K over the course of the day. The effects of effective anisotropy are highest in the daytime, particularly around sunrise and sunset when different views can lead to differences in T0,d(φ,Ω) that are as high as 3.5 K. For a sensor with a narrow FOV in the nadir of the urban surface, T0,d(φ=0) differs from T0,C by +1.9 K (day) and by −1.6 K (night). Simulations of the FOV of hemispherical, downward-facing pyrgeometers at 270 positions show considerable variations in the measured L and inferred hemispherical radiometeric temperature T0,h as a function of both horizontal placement and height. The root mean squared error (RMSE) between different horizontal positions in retrieving outgoing longwave emittance L↑ decreased exponentially with height, and was 11.2, 6.3 and 2.0 W m−2 at 2, 3, and 5 times the mean building height zb. Generally, above 3.5zb the horizontal positional error is less than the typical accuracy of common pyrgeometers. The average T0,h over 24 h determined from the hemispherical radiometer sufficiently above an urban surface is in close agreement with the average T0,C. However, over the course of the day, the difference between T0,h and T0,C shows an RMSE of 1.7 K (9.4 W m−2) because the relative contributions of facets within the projected FOV of a pyrgeometer do not correspond to their fractions of the complete urban surface.

Funder

Canadian Foundation for Climate and Atmospheric Sciences

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference35 articles.

1. Adderley, C. D.: The effect of preferential view direction on measured urban surface temperature, Master's thesis, University of British Columbia, 2012.

2. Arya, S. P.: Introduction to Micrometeorology, Academic Press, 2 Edn., 2008.

3. Christen, A. and Vogt, R.: Energy and radiation balance of a central European city, Int. J. Climatol., 24, 1395–1421, 2004.

4. Christen, A., Meier, F., and Scherer, D.: High-frequency fluctuations of surface temperatures in an urban environment, Theor. Appl. Climatol., 108, 301–324, 2012.

5. Christen, A., Oke, T. R., Steyn, D. G., and Roth, M.: 35 years of urban climate research at the "Vancouver-Sunset" flux tower, FluxLetter, 5, 29–36, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3