A Quantitative Study of a Directional Heat Island in Hefei, China Based on Multi-Source Data

Author:

Shi Biao1,Tu Lili1,Jiang Lu23,Zhang Jiyuan1,Geng Jun45

Affiliation:

1. College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing 210046, China

3. School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

4. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

5. The Centre d’ Etudes Spatiales de la Biosphere, University of Toulouse, 31062 Toulouse, France

Abstract

Surface urban heat islands (SUHIs) are essential for evaluating urban thermal environments. However, current quantitative studies of SUHIs ignore the thermal radiation directionality (TRD), which directly affects study precision; furthermore, they fail to assess the effects of TRD characteristics at different land-use intensities, on the quantitative studies of SUHIs. To bridge this research gap, this study eliminates the interference of atmospheric attenuation and daily temperature variation factors, in quantifying the TRD based on land surface temperature (LST), from MODIS data and station air temperature data for Hefei (China) from 2010–2020. The influence of TRD on SUHI intensity quantification was evaluated by comparing the TRD under different land-use intensities in Hefei. The results show that: (1) daytime and nighttime directionality can reach up to 4.7 K and 2.6 K, and occur in areas with the highest and medium urban land-use intensity, respectively. (2) There are two significant TRD hotspots for daytime urban surfaces, where the sensor zenith angle is approximately the same as the forenoon solar zenith angle, and where the sensor zenith angle is near its nadir in the afternoon. (3) The TRD can contribute up to 2.0 K to the results of assessing the SUHI intensity based on satellite data, which is approximately 31–44% of the total SUHI in Hefei.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference73 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3