Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description
-
Published:2013-05-22
Issue:5
Volume:6
Page:1329-1346
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Dinoev T.,Simeonov V.,Arshinov Y.,Bobrovnikov S.,Ristori P.,Calpini B.,Parlange M.,van den Bergh H.
Abstract
Abstract. A new Raman lidar for unattended, round-the-clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology, Lausanne. The lidar uses narrow field-of-view, narrowband configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the nighttime range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day- and nighttime lidar profiles compared to Vaisala RS92 and Snow White® profiles and a six-day continuous observation are presented as an illustration of the lidar measurement capability.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference51 articles.
1. Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR Ratio, Appl. Phys. B, 42, 18–28, 1992. 2. Appituley, A., Wilson, K., Potma, C., Volten, H., and de Graaf, M.: Performance assessment and application of CAELI – A high-performance Raman lidar for diurnal profiling of Water Vapour, Aerosols and Clouds, Proceedings of the 8th International Symposium on Tropospheric Profiling, edited by: Apituley, A., Russchenberg, H. W. J., and Monna, W. A. A., ISBN 978-90-6960-233-2 Delft, The Netherlands, S06–O10, October, 2009. 3. Arnold, D. L.: Severe deep moist convective storms: Forecasting and mitigation, Geography Compass, 2, 30–66, 2008. 4. Avila, G., Fernandez, J. M., Mate, B., Tejeda, G., and Montero, S.: Ro-vibrational Raman cross sections of water vapor in the OH stretching region, J. Mol. Spec., 196, 77–92, 1999. 5. Balin, I., Serikov, I., Bobrovnikov, S., Simeonov, V., Calpini, B., Arshynov, Y., and van den Bergh, H.: Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar, Appl. Phys. B, 79, 775–782, 2004.
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|