Evaluation of an Automatic Meteorological Drone Based on a 6-Month Measurement Campaign

Author:

Hervo Maxime1ORCID,Romanens Gonzague1,Martucci Giovanni1,Weusthoff Tanja2,Haefele Alexander1ORCID

Affiliation:

1. Federal Office of Meteorology and Climatology MeteoSwiss, 1530 Payerne, Switzerland

2. Federal Office of Meteorology and Climatology MeteoSwiss, 8058 Zurich, Switzerland

Abstract

From December 2021 to May 2022, MeteoSwiss and Meteomatics conducted a proof of concept to demonstrate the capability of automatic drones to provide data of sufficient quality and reliability on a routine operational basis. Over 6 months, Meteodrones MM-670 were operated automatically eight times per night at Payerne, Switzerland. In total, 864 meteorological profiles were measured and compared to co-located standard measurements, including radiosoundings and remote sensing instruments. To our knowledge, this is the first time that Meteodrone’s atmospheric profiles have been evaluated in such an extensive campaign. The paper highlights two case studies that showcase the performance and challenges of measuring temperature, humidity, and wind with a Meteodrone. It also focuses on the overall quality of the drone measurements. Throughout the campaign, the availability of Meteodrone measurements was 75.7%, with 82.2% of the flights reaching the nominal altitude of 2000 m above sea level. The quality of the measurements was assessed against the WMO’s (World Meteorological Organization) requirements. The temperature measurements gathered by the Meteodrone met the “breakthrough” target, while the humidity and wind profiles met the “threshold” target for high-resolution numerical weather prediction. The temperature measurement quality was comparable to that of a microwave radiometer, and the humidity quality was similar to that obtained from a Raman LiDAR. However, the wind measurements gathered by a Doppler LiDAR were more accurate than the estimation provided by the Meteodrone. This campaign marks a significant step towards the operational use of automatic drones for meteorological applications.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3