Theoretical and empirical evidence against the Budyko catchment trajectory conjecture

Author:

Reaver Nathan G. F.ORCID,Kaplan David A.,Klammler Harald,Jawitz James W.ORCID

Abstract

Abstract. The Budyko framework posits that a catchment's long-term mean evapotranspiration (ET) is primarily governed by the availabilities of water and energy, represented by long-term mean precipitation (P) and potential evapotranspiration (PET), respectively. This assertion is supported by the distinctive clustering pattern that catchments take in Budyko space. Several semi-empirical, nonparametric curves have been shown to generally represent this clustering pattern but cannot explain deviations from the central tendency. Parametric Budyko equations attempt to generalize the nonparametric framework, through the introduction of a catchment-specific parameter (n or w). Prevailing interpretations of Budyko curves suggest that the explicit functional forms represent trajectories through Budyko space for individual catchments undergoing changes in the aridity index, PETP, while the n and w values represent catchment biophysical features; however, neither of these interpretations arise from the derivation of the Budyko equations. In this study, we reexamine, reinterpret, and test these two key assumptions of the current Budyko framework both theoretically and empirically. In our theoretical test, we use a biophysical model for ET to demonstrate that n and w values can change without invoking changes in landscape biophysical features and that catchments are not required to follow Budyko curve trajectories. Our empirical test uses data from 728 reference catchments in the United Kingdom (UK) and United States (US) to illustrate that catchments rarely follow Budyko curve trajectories and that n and w are not transferable between catchments or across time for individual catchments. This nontransferability implies that n and w are proxy variables for ETP, rendering the parametric Budyko equations underdetermined and lacking predictive ability. Finally, we show that the parametric Budyko equations are nonunique, suggesting their physical interpretations are unfounded. Overall, we conclude that, while the shape of Budyko curves generally captures the global behavior of multiple catchments, their specific functional forms are arbitrary and not reflective of the dynamic behavior of individual catchments.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3