Soil drainage modulates climate effects to shape seasonal and mean annual water balances across the southeastern United States

Author:

Wang Zeqiang1ORCID,Berghuijs Wouter R.2,Howden Nicholas13ORCID,Woods Ross13

Affiliation:

1. School of Civil, Aerospace, and Design Engineering University of Bristol Bristol UK

2. Department of Earth Sciences Free University Amsterdam Amsterdam The Netherlands

3. Cabot Institute University of Bristol Bristol UK

Abstract

AbstractClimatic forcing and landscape properties control catchments' hydrological responses over both seasonal and mean annual timescales. Controls on annual and seasonal water balances are usually studied separately which limits and fragments understanding of catchment behaviour. Establishing process controls on hydrological responses that act across multiple time scales could better unify hydrological theory. Here, we use streamflow and climate data from 56 catchments in the Ozarks and Appalachian regions (US) to test how climate (aridity index) and soil drainage together shape seasonal and mean annual water balances for these humid, snow‐free catchments with little precipitation seasonality. We calibrate a simple conceptual model to observed seasonal streamflow and obtain an effective parameter that summarizes the nonlinearity of drainage of soil moisture to groundwater. Our comparative analysis of catchments in the Ozarks and the Appalachian regions indicates that catchments in the more humid climates have lower streamflow seasonality and higher mean annual flow, irrespective of the nonlinearity of soil drainage. In contrast, in relatively drier climates, more nonlinear soil drainage increases the seasonality of streamflow and reduces mean annual flow. Additional testing across 204 humid catchments with little precipitation seasonality and snowfall in the Southeastern United States further supports our hypothesis that soil drainage nonlinearity significantly modulates seasonal and mean annual water balances. These results reveal how soil drainage nonlinearity provides a process interpretation that connects seasonal and annual water balances and highlights the importance of nonlinearity of soil drainage in hydrological modelling.

Funder

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3