Abstract
Abstract. Climate models predict an intensification of precipitation extremes as a result of a warmer and moister atmosphere at the rate of 7 % K−1. However, observations in tropical regions show contrastingly negative precipitation–temperature scaling at temperatures above 23–25 ∘C. We use observations from India and show that this negative scaling can be explained by the radiative effects of clouds on surface temperatures. Cloud radiative cooling during precipitation
events make observed temperatures covary with precipitation, with wetter
periods and heavier precipitation having a stronger cooling effect. We
remove this confounding effect of clouds from temperatures using a surface
energy balance approach constrained by thermodynamics. We then find a
diametric change in precipitation scaling with rates becoming positive and
coming closer to the Clausius–Clapeyron (CC) scaling rate (7 % K−1). Our findings imply that the intensification of precipitation extremes with warmer temperatures expected with global warming is consistent with observations from tropical regions when the radiative effect of clouds on surface temperatures and the resulting covariation with precipitation is accounted for.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献