Quantifying multi-year hydrological memory with Catchment Forgetting Curves
-
Published:2022-05-24
Issue:10
Volume:26
Page:2715-2732
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
de Lavenne AlbanORCID, Andréassian VazkenORCID, Crochemore LouiseORCID, Lindström Göran, Arheimer BeritORCID
Abstract
Abstract. A climatic anomaly can potentially affect the hydrological behaviour of a catchment for several years. This article presents a new approach to quantifying this multi-year hydrological memory, using exclusively streamflow and climate data. Rather than providing a single value of catchment memory, we aim to describe how this memory fades over time. The precipitation–runoff relationship is analyzed through the concept of elasticity. Elasticity quantifies the change in one quantity caused by the change in another quantity. We analyze the elasticity of the relation between the annual anomalies of runoff yield and humidity index. We identify Catchment Forgetting Curves (CFC) to quantify multi-year catchment memory, considering not only the current year's humidity anomaly but also the anomalies of the preceding years. The variability of CFCs is investigated on a set of 158 Swedish and 527 French catchments. As expected, French catchments overlying large aquifers exhibit a long memory, i.e., with the impact of climate anomalies detected over several years. In Sweden, the expected effect of the lakes is less clear. For both countries, a relatively strong relationship between the humidity index and memory is identified, with drier regions exhibiting longer memory. Taking into account the multi-year memory has significantly improved the elasticity analysis for 15 % of the catchments. Our work thus underlines the need to account for catchment memory in order to produce meaningful and geographically coherent elasticity indices.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference71 articles.
1. Amogu, O., Descroix, L., Yéro, K. S., Breton, E. L., Mamadou, I., Ali,
A., Vischel, T., Bader, J.-C., Moussa, I. B., Gautier, E., Boubkraoui, S.,
and Belleudy, P.: Increasing River Flows in the Sahel?, Water, 2, 170–199,
https://doi.org/10.3390/w2020170, 2010. a 2. Andersson, L. and Arheimer, B.: Modelling of human and climatic impact on
nitrogen load in a Swedish river 1885-1994, Hydrobiologia, 497, 63–77,
https://doi.org/10.1023/a:1025409620738, 2003. a 3. Andréassian, V. and Perrin, C.: On the ambiguous interpretation of the
Turc-Budyko nondimensional graph, Water Resour. Res., 48,
https://doi.org/10.1029/2012wr012532, 2012. a 4. Andréassian, V., Coron, L., Lerat, J., and Le Moine, N.: Climate elasticity of streamflow revisited – an elasticity index based on long-term hydrometeorological records, Hydrol. Earth Syst. Sci., 20, 4503–4524, https://doi.org/10.5194/hess-20-4503-2016, 2016. a, b 5. Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical
properties at European scale using the LUCAS database, Geoderma, 261,
110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016. a
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|