Toward interpretable LSTM-based modeling of hydrological systems

Author:

De la Fuente Luis AndresORCID,Ehsani Mohammad Reza,Gupta Hoshin Vijai,Condon Laura ElizabethORCID

Abstract

Abstract. Several studies have demonstrated the ability of long short-term memory (LSTM) machine-learning-based modeling to outperform traditional spatially lumped process-based modeling approaches for streamflow prediction. However, due mainly to the structural complexity of the LSTM network (which includes gating operations and sequential processing of the data), difficulties can arise when interpreting the internal processes and weights in the model. Here, we propose and test a modification of LSTM architecture that is calibrated in a manner that is analogous to a hydrological system. Our architecture, called “HydroLSTM”, simulates the sequential updating of the Markovian storage while the gating operation has access to historical information. Specifically, we modify how data are fed to the new representation to facilitate simultaneous access to past lagged inputs and consolidated information, which explicitly acknowledges the importance of trends and patterns in the data. We compare the performance of the HydroLSTM and LSTM architectures using data from 10 hydro-climatically varied catchments. We further examine how the new architecture exploits the information in lagged inputs, for 588 catchments across the USA. The HydroLSTM-based models require fewer cell states to obtain similar performance to their LSTM-based counterparts. Further, the weight patterns associated with lagged input variables are interpretable and consistent with regional hydroclimatic characteristics (snowmelt-dominated, recent rainfall-dominated, and historical rainfall-dominated). These findings illustrate how the hydrological interpretability of LSTM-based models can be enhanced by appropriate architectural modifications that are physically and conceptually consistent with our understanding of the system.

Funder

Division of Earth Sciences

Innovation and Technology Ecosystems

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3