Characterizing the Evolution of Extreme Water Levels with Long Short-Term Memory Station-Based Approximated Models and Transfer Learning Techniques

Author:

Daramola Samuel,Muñoz Paul,Irish Jennifer,Saksena Siddharth,Muñoz Pauta David F.

Publisher

Elsevier BV

Reference99 articles.

1. Irene (2011) and Sandy (2012), are in the training set, the performance of all Bi-LSTM models are satisfactory, with metrics comparable to Bi-LSTM-ATT models (Table S3). Here, the goal is to predict the evolution of EWLs for relevant extreme events such as Hurricane Isabel (2003) and Dorian;contrast, the top-two transferable Bi-LSTM-ATT models achieve high KGE of 0.94 and 0.93 and NSE of 0.97 and 0.97 when predicting EWLs triggered by Hurricane Isabel (Figure 5b),2003

2. Multivariate remotely sensed and in-situ data assimilation for enhancing community WRF-Hydro model forecasting;P Abbaszadeh;Advances in Water Resources,2020

3. Att-BiL-SL: Attention-Based Bi-LSTM and Sequential LSTM for Describing Video in the Textual Formation;S Ahmed;Applied Sciences,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3