Monitoring the combined effects of drought and salinity stress on crops using remote sensing in the Netherlands

Author:

Wen WenORCID,Timmermans Joris,Chen Qi,van Bodegom Peter M.ORCID

Abstract

Abstract. Global sustainable agricultural systems are under threat, due to increasing and co-occurring drought and salinity stresses. Combined effects of these stresses on agricultural crops have traditionally been evaluated in small-scale experimental studies. Consequently, large-scale studies need to be performed to increase our understanding and assessment of the combined impacts in agricultural practice in real-life scenarios. This study aims to provide a new monitoring approach using remote-sensing observations to evaluate the joint impacts of drought and salinity on crop traits. In our tests over the Netherlands at large spatial scale (138.74 km2), we calculated five functional traits for both maize and potato from Sentinel-2 observations, namely leaf area index (LAI), the fraction of absorbed photosynthetically active radiation (FAPAR), the fraction of vegetation cover (FVC), leaf chlorophyll content (Cab), and leaf water content (Cw). Individual and combined effects of the stresses on the seasonal dynamics in crop traits were determined using both one-way and two-way analyses of variance (ANOVAs). We found that both stresses (individual and co-occurring) affected the functional traits of both crops significantly (with R2 ranging from 0.326 to 0.796) though with stronger sensitivities to drought than to salinity. While we found exacerbating effects within co-occurrent stresses, the impact level depended strongly on the moment in the growing season. For both crops, LAI, FAPAR, and FVC dropped the most under severe drought stress conditions. The patterns for Cab and Cw were more inhibited by co-occurring drought and salinity. Consequently, our study constitutes a way towards evaluating drought and salinity impacts in agriculture, with the possibility of potential large-scale application for sustainable food security.

Funder

China Scholarship Council

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3