Agronomic and Physiological Traits Response of Three Tropical Sorghum (Sorghum bicolor L.) Cultivars to Drought and Salinity

Author:

Dewi Elvira Sari12,Abdulai Issaka1,Bracho-Mujica Gennady1ORCID,Appiah Mercy1ORCID,Rötter Reimund P.13ORCID

Affiliation:

1. Department of Crop Sciences, Tropical Plant Production and Agricultural System Modelling (TROPAGS), University of Göttingen, Grisebachstraße 6, 37077 Göttingen, Germany

2. Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh Utara 24355, Indonesia

3. Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany

Abstract

Sorghum holds the potential for enhancing food security, yet the impact of the interplay of water stress and salinity on its growth and productivity remains unclear. To address this, we studied how drought and salinity affect physiological traits, water use, biomass, and yield in different tropical sorghum varieties, utilizing a functional phenotyping platform, Plantarray. Cultivars (Kuali, Numbu, Samurai2) were grown under moderate and high salinity, with drought exposure at booting stage. Results showed that Samurai2 had the most significant transpiration reduction under moderate and high salt (36% and 48%) versus Kuali (22% and 42%) and Numbu (19% and 16%). Numbu reduced canopy conductance (25% and 15%) the most compared to Samurai2 (22% and 33%) and Kuali (8% and 35%). In the drought*salinity treatment, transpiration reduction was substantial for Kuali (54% and 57%), Samurai2 (45% and 60%), and Numbu (29% and 26%). Kuali reduced canopy conductance (36% and 53%) more than Numbu (36% and 25%) and Samurai2 (33% and 49%). Biomass, grain yield, and a-100 grain weight declined in all cultivars under both salinity and drought*salinity, and Samurai2 was most significantly affected. WUEbiomass significantly increased under drought*salinity. Samurai2 showed reduced WUEgrain under drought*salinity, unlike Kuali and Numbu, suggesting complex interactions between water limitation and salinity in tropical sorghum.

Funder

Indonesia Endowment Fund for Education (Lembaga Pengelola Dana Pendidikan—LPDP), Ministry of Finance, Republic of Indonesia

Division of TROPAGS, Department of Crop Sciences, University of Göttingen, Germany

Barley Responses and Adaptation to Changing Environments

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3