Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective

Author:

Li YuanORCID,Wu ZhiyongORCID,He Hai,Yin Hao

Abstract

Abstract. Accurate and reliable subseasonal precipitation forecasts are of great socioeconomic value for various aspects. The atmospheric intraseasonal oscillation (ISO), which is one of the leading sources of subseasonal predictability, can potentially be used as predictor for subseasonal precipitation forecasts. However, the relationship between atmospheric intraseasonal signals and subseasonal precipitation is of high uncertainty. In this study, we develop a spatiotemporal-projection-based Bayesian hierarchical model (STP-BHM) for subseasonal precipitation forecasts. The coupled covariance patterns between the preceding atmospheric intraseasonal signals and precipitation are extracted, and the corresponding projection coefficients are defined as predictors. A Bayesian hierarchical model (BHM) is then built to address the uncertainty in the relationship between atmospheric intraseasonal signals and precipitation. The STP-BHM model is applied to predict both the pentad mean precipitation amount and pentad mean precipitation anomalies for each hydroclimatic region over China during the boreal summer monsoon season. The model performance is evaluated through a leave-1-year-out cross-validation strategy. Our results suggest that the STP-BHM model can provide skillful and reliable probabilistic forecasts for both the pentad mean precipitation amount and pentad mean precipitation anomalies at leads of 20–25 d over most hydroclimatic regions in China. The results also indicate that the STP-BHM model outperforms the National Centers for Environmental Prediction (NCEP) subseasonal to seasonal (S2S) model when the lead time is beyond 5 d for pentad mean precipitation amount forecasts. The intraseasonal signals of 850 and 200 hPa zonal wind (U850 and U200) and 850 and 500 hPa geopotential height (H850 and H500) contribute more to the overall forecast skill of the pentad mean precipitation amount predictions. In comparison, the outgoing longwave radiation anomalies (OLRAs) contribute most to the forecast skill of the pentad mean precipitation anomaly predictions. Other sources of subseasonal predictability, such as soil moisture, snow cover, and stratosphere–troposphere interaction, will be included in the future to further improve the subseasonal precipitation forecast skill.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3