Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis

Author:

Shi HaiyangORCID,Luo Geping,Hellwich Olaf,Xie Mingjuan,Zhang Chen,Zhang Yu,Wang Yuangang,Yuan Xiuliang,Ma Xiaofei,Zhang Wenqiang,Kurban Alishir,De Maeyer PhilippeORCID,Van de Voorde TimORCID

Abstract

Abstract. With the rapid accumulation of water flux observations from global eddy-covariance flux sites, many studies have used data-driven approaches to model water fluxes, with various predictors and machine learning algorithms used. However, it is unclear how various model features affect prediction accuracy. To fill this gap, we evaluated this issue based on records of 139 developed models collected from 32 such studies. Support vector machines (SVMs; average R-squared = 0.82) and RF (random forest; average R-squared = 0.81) outperformed other evaluated algorithms with sufficient sample size in both cross-study and intra-study (with the same data) comparisons. The average accuracy of the model applied to arid regions is higher than in other climate types. The average accuracy of the model was slightly lower for forest sites (average R-squared = 0.76) than for croplands and grasslands (average R-squared = 0.8 and 0.79) but higher than for shrubland sites (average R-squared = 0.67). Using Rn/Rs, precipitation, Ta, and the fraction of absorbed photosynthetically active radiation (FAPAR) improved the model accuracy. The combined use of Ta and Rn/Rs is very effective, especially in forests, while in grasslands the combination of Ws and Rn/Rs is also effective. Random cross-validation showed higher model accuracy than spatial cross-validation and temporal cross-validation, but spatial cross-validation is more important in spatial extrapolation. The findings of this study are promising to guide future research on such machine-learning-based modeling.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3