Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing

Author:

Xie MingjuanORCID,Ma XiaofeiORCID,Wang YuangangORCID,Li ChaofanORCID,Shi HaiyangORCID,Yuan Xiuliang,Hellwich Olaf,Chen Chunbo,Zhang WenqiangORCID,Zhang ChenORCID,Ling QingORCID,Gao RuixiangORCID,Zhang YuORCID,Ochege Friday UchennaORCID,Frankl AmauryORCID,De Maeyer Philippe,Buchmann NinaORCID,Feigenwinter Iris,Olesen Jørgen E.ORCID,Juszczak Radoslaw,Jacotot AdrienORCID,Korrensalo Aino,Pitacco AndreaORCID,Varlagin AndrejORCID,Shekhar AnkitORCID,Lohila AnnaleaORCID,Carrara ArnaudORCID,Brut Aurore,Kruijt BartORCID,Loubet Benjamin,Heinesch Bernard,Chojnicki Bogdan,Helfter CaroleORCID,Vincke Caroline,Shao Changliang,Bernhofer ChristianORCID,Brümmer ChristianORCID,Wille ChristianORCID,Tuittila Eeva-StiinaORCID,Nemitz Eiko,Meggio FrancoORCID,Dong Gang,Lanigan Gary,Niedrist GeorgORCID,Wohlfahrt GeorgORCID,Zhou Guoyi,Goded IgnacioORCID,Gruenwald ThomasORCID,Olejnik JanuszORCID,Jansen JoachimORCID,Neirynck JohanORCID,Tuovinen Juha-PekkaORCID,Zhang Junhui,Klumpp KatjaORCID,Pilegaard Kim,Šigut LadislavORCID,Klemedtsson LeifORCID,Tezza LucaORCID,Hörtnagl LukasORCID,Urbaniak MarekORCID,Roland MarilynORCID,Schmidt MariusORCID,Sutton Mark A.,Hehn Markus,Saunders MatthewORCID,Mauder Matthias,Aurela MikaORCID,Korkiakoski MikaORCID,Du MingyuanORCID,Vendrame NadiaORCID,Kowalska NataliaORCID,Leahy Paul G.ORCID,Alekseychik Pavel,Shi PeiliORCID,Weslien PerORCID,Chen Shiping,Fares SilvanoORCID,Friborg ThomasORCID,Tallec Tiphaine,Kato TomomichiORCID,Sachs TorstenORCID,Maximov Trofim,di Cella Umberto Morra,Moderow UtaORCID,Li YingnianORCID,He Yongtao,Kosugi Yoshiko,Luo GepingORCID

Abstract

AbstractSimulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002–2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983–2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3