Recent increase in the observation-derived land evapotranspiration due to global warming

Author:

Wang RenORCID,Li Longhui,Gentine PierreORCID,Zhang Yao,Chen Jianyao,Chen Xingwei,Chen Lijuan,Ning Liang,Yuan Linwang,Lü Guonian

Abstract

Abstract Estimates of change in global land evapotranspiration (ET) are necessary for understanding the terrestrial hydrological cycle under changing environments. However, large uncertainties still exist in our estimates, mostly related to the uncertainties in upscaling in situ observations to large scale under non-stationary surface conditions. Here, we use machine learning models, artificial neural network and random forest informed by ground observations and atmospheric boundary layer theory, to retrieve consistent global long-term latent heat flux (ET in energy units) and sensible heat flux over recent decades. This study demonstrates that recent global land ET has increased significantly and that the main driver for the increased ET is increasing temperature. Moreover, the results suggest that the increasing ET is mostly in humid regions such as the tropics. These observation-driven findings are consistent with the idea that ET would increase with climate warming. Our study has important implications in providing constraints for ET and in understanding terrestrial water cycles in changing environments.

Funder

China Postdoctoral Science Foundation

Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3