Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions

Author:

Baró Pérez Alejandro,Diamond Michael S.ORCID,Bender Frida A.-M.ORCID,Devasthale AbhayORCID,Schwarz Matthias,Savre Julien,Tonttila JuhaORCID,Kokkola HarriORCID,Lee HyunhoORCID,Painemal David,Ekman Annica M. L.ORCID

Abstract

Abstract. Biomass burning plumes are frequently transported over the southeast Atlantic (SEA) stratocumulus deck during the southern African fire season (June–October). The plumes bring large amounts of absorbing aerosols and enhanced moisture, which can trigger a rich set of aerosol–cloud–radiation interactions with climatic consequences that are still poorly understood. We use large-eddy simulation (LES) to explore and disentangle the individual impacts of aerosols and moisture on the underlying stratocumulus clouds, the marine boundary layer (MBL) evolution, and the stratocumulus-to-cumulus transition (SCT) for three different meteorological situations over the southeast Atlantic during August 2017. For all three cases, our LES shows that the SCT is driven by increased sea surface temperatures and cloud-top entrainment as the air is advected towards the Equator. In the LES model, aerosol indirect effects, including impacts on drizzle production, have a small influence on the modeled cloud evolution and SCT, even when aerosol concentrations are lowered to background concentrations. In contrast, local semi-direct effects, i.e., aerosol absorption of solar radiation in the MBL, cause a reduction in cloud cover that can lead to a speed-up of the SCT, in particular during the daytime and during broken cloud conditions, especially in highly polluted situations. The largest impact on the radiative budget comes from aerosol impacts on cloud albedo: the plume with absorbing aerosols produces a total average 3 d of simulations. We find that the moisture accompanying the aerosol plume produces an additional cooling effect that is about as large as the total aerosol radiative effect. Overall, there is still a large uncertainty associated with the radiative and cloud evolution effects of biomass burning aerosols. A comparison between different models in a common framework, combined with constraints from in situ observations, could help to reduce the uncertainty.

Funder

Swedish National Space Agency

Horizon 2020 Framework Programme

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3